

ISOLATED DC-DC Converter EC1TAN SERIES APPLICATION NOTE

Approved By:

Department	Approved By	Checked By	Written By
Research and Development Department	Jacky	Danny	Joyce
Design Quality Department			

<u>Content</u>

1. INTRODUCTION	3
2. DC-DC CONVERTER FEATURES	3
3. ELECTRICAL BLOCK DIAGRAM	3
4. TECHNICAL SPECIFICATIONS	4
5. MAIN FEATURES AND FUNCTIONS	6
5.1 Operating Temperature Range	6
5.2 Output Short Circuit Protection	6
6. APPLICATIONS	6
6.1 Recommended Layout PCB Footprints	6
6.2 Power De-rating Curves for EC1TAN Series	7
6.3 Efficiency vs. Load Curves	8
6.4 Input Capacitance at the Power Module	10
6.5 Test Set-Up	10
6.6 Output Ripple and Noise Measurement	11
6.7 Output Capacitance	11
7. SAFETY & EMC	12
7.1 Input Fusing and Safety Considerations.	12
7.2 EMC Considerations	12
8. PART NUMBER	14
9. MECHANICAL OUTLINE DIAGRAMS	14
9.1 Mechanical Outline Diagrams	14
9.2 Packaging Details	15

1. Introduction

The EC1TAN series offer 1 watts of output power with Industry Standard Single-In-line Package(5&12Vin) in a $0.46 \times 0.24 \times 0.40$ inches(11.6 $\times 6.1 \times 10.2$ mm) and Packages(24Vin) $0.46 \times 0.30 \times 0.40$ inches(11.6 $\times 7.5 \times 10.2$ mm). The EC1TAN series have a ±10% input voltage range of 5Vdc, 12Vdc and 24Vdc provide a unregulated output. This series are with features as miniature size, 1000VDC of isolation and allow an operating ambient temperature range of -40°Cto 85°C. All models are very suitable for telecommunications, distributed power systems, battery operated equipment, industrial, portable equipment applications.

2. DC-DC Converter Features

- Industry Standard SIP Packages
- Efficiency up to 82%
- 1000VDC Isolation
- Low Cost
- Unregulated Outputs
- Low Ripple and Noise
- No Tantalum Capacitors Inside
- RoHS compliance

Figure1 Electrical Block Diagram

3. Electrical Block Diagram

4. Technical Specifications

(All specifications are typical at nominal input, full load at 25° C unless otherwise noted.)

ABSOLUTE MAXIMUM RATINGS

PARAMETER	NOTES and CONDITIONS	Device	Min.	Typical Max.	Units
Input Voltage	•	·	•		•
		EC1TA0XN	-0.7	5.5	
Continuous		EC1TA1XN	-0.7	13.2	V _{dc}
		EC1TA2XN	-0.7	26.4	
		EC1TA0XN	-0.7	9	
Transient	100ms	EC1TA1XN	-0.7	18	V _{dc}
		EC1TA2XN	-0.7	30	
Operating Ambient Temperature		All	-40	+85	°C
Storage Temperature		All	-55	+125	°C
Operating Case Temperature		All	-40	+100	°C
Input/Output Isolation Voltage	1 Minute	All	1000		V _{dc}

INPUT CHARACTERISTICS

PARAMETER	NOTES and CONDITIONS	Device	Min.	Typical	Max.	Units
		EC1TA0XN	4.5	5	5.5	
Operating Input Voltage		EC1TA1XN	10.8	12	13.2	V _{dc}
		EC1TA2XN	21.6	24	26.4	
	100% Load, V _{in} =4.5V for EC1TA0XN	EC1TA0XN		250		
Maximum Input Current	100% Load, V _{in} =10.8V for EC1TA1XN	EC1TA1XN		105		mA
	100% Load, V _{in} =21.6V for EC1TA2XN	EC1TA2XN		55		
	V _{in} =5V _{dc}	EC1TA0XN		40		
No-Load Input Current	V _{in} =12V _{dc}	EC1TA1XN		15		mA
	V _{in} =24V _{dc}	EC1TA2XN		7		
Inrush Current (I ² t)		All			0.01	A ² s

OUTPUT CHARACTERISTIC

PARAMETER	NOTES and CONDITIONS	Device	Min.	Typical	Max.	Units
		5Vo	4.85	5.0	5.15	
Output Voltage Set Point	V _{in} =Nominal V _{in} , I _o =I _{o.max.,} T _c =25°C	12Vo	11.64	12	12.36	V _{dc}
		15Vo	14.55	15	15.45	
Output Voltage Regulation						
Load Regulation	I _o =20% to 100%	All			±10	%
Line Regulation	For V _{in} change of 1%	All			±1.2	%
Temperature Coefficient	T₂=-40°C to 85°C	All			±0.05	%/°C
Output Voltage Ripple and Noise	· · · ·					
Peak-to-Peak	Full load, 20MHz bandwidth, output with 0.33uF ceramic capacitor	All			100	mV

OUTPUT CHARACTERISTIC

PARAMETER	NOTES and CONDITIONS	Device	Min.	Typical N	/lax.	Units
		5Vo	0	2	200	
Operating Output Current Range		12Vo	0		84	mA
		15Vo	0		67	
Over Load	$V_{\text{in}}\text{=}\text{Nominal,}$ output voltage within V_{o} set point $\pm 5\%$	All	120			%
Maximum Output Capacitance	Full load	All		2	220	uF
Output Short Circuit	Momentary	All			1	sec.

EFFICIENCY

PARAMETER	NOTES and CONDITIONS	Device	Min. Typical Max.	Units
		EC1TA01N	79	
		EC1TA02N	79	
		EC1TA03N	80	
		EC1TA11N	81	
100% Load		EC1TA12N	81	%
		EC1TA13N	82	
		EC1TA21N	80	
		EC1TA22N	80	
		EC1TA23N	81	

ISOLATION CHARACTERISTICS

PARAMETER	NOTES and CONDITIONS	Device	Min.	Typical	Max.	Units
Input to Output	1 Minutes	All	1000			V _{dc}
Isolation Resistance		All	1000			MΩ
Isolation Capacitance		All		10		pF
FEATURE CHARACTERIS	STICS					
PARAMETER	NOTES and CONDITIONS	Device	Min.	Typical	Max.	Units
		EC1TA0xN		00		
Switching Frequency	V _{in} =Nominal V _{in} , full load	EC1TA1xN	90		KHz	
		EC1TA2XN		80]

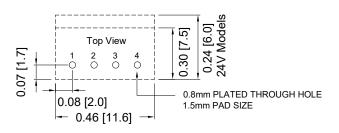
GENERAL SPECIFICATIONS

PARAMETER	NOTES and CONDITIONS	Device	Min.	Typical	Max.	Units
МТВF	I₀=100%of I₀a;Ta=25℃ per MIL-HDBK-217F, GB	All	1.7			M hours
		EC1TA0xN		1.3		
Weight		EC1TA1XN		1.5		grams
		EC1TA2XN		1.7		

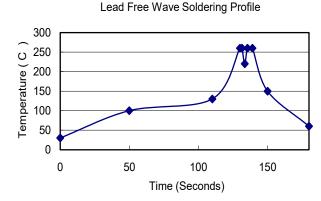
5. Main Features and Functions

5.1 Operating Temperature Range

The EC1TAN series converters can be operated by a wide ambient temperature range from -40°C to 85°C. The standard model has a plastic case and case temperature can not over 100°C at normal operating.


5.2 Output Short Circuit Protection

All different voltage models have a momentary shortcircuit protection (1 Second maximum). Please notice this condition and avoid output short as much as possible.


6. Applications

6.1 Recommended Layout PCB Footprints

The system designer or the end user must ensure that other components and metal in the vicinity of the converter meet the spacing requirements to which the system is approved. Low resistance and low inductance PCB layout traces are the norm and should be used where possible. Due consideration must also be given to proper low impedance tracks between power module, input and output grounds. The recommended footprints and soldering profiles are shown as Figure 2.

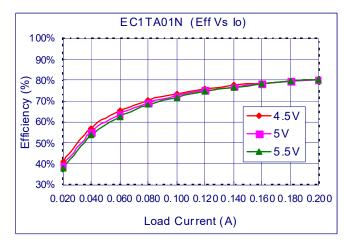
Note: Dimensions are in inches (millimeters)

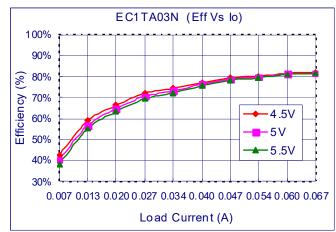
Note :

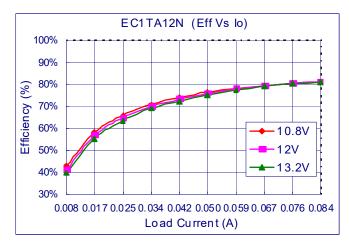
- 1. Soldering Materials: Sn/Cu/Ni
- 2. Ramp up rate during preheat: 1.4°C/Sec (From 50°C to 100°C)
- 3. Soaking temperature: 0.5°C/Sec (From 100°C to 130°C), 60 \pm 20 seconds
- 4. Peak temperature: 260°C, above 250°C 3~6 Seconds
- 5. Ramp up rate during cooling: -10.0°C/Sec (From 260°C to 150°C)

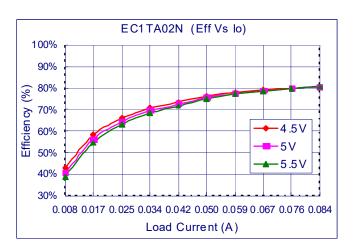
Figure2 Recommended PCB Layout Footprint and Soldering Profile

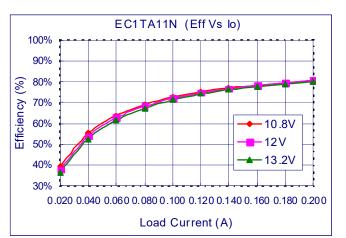
6.2 Power De-rating Curves for EC1TAN Series

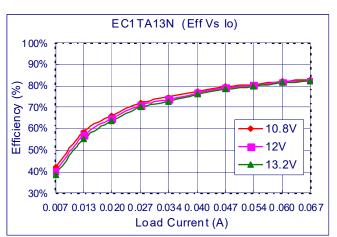

Operating Ambient temperature Range: -40°C ~ 85°C. Maximum case temperature under any operating condition should not be exceed 100°C.

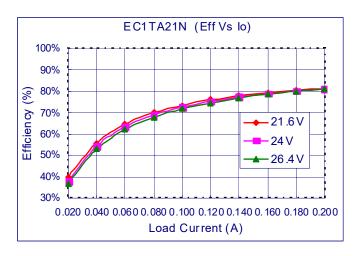


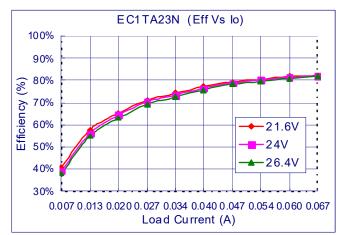

Figure3 Typical Power De-rating Curve for EC1TAN Series

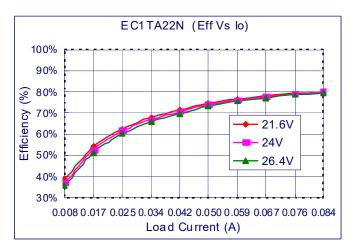


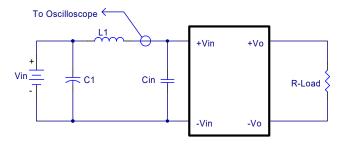

6.3 Efficiency vs. Load Curves











6.4 Input Capacitance at the Power Module

The converters must be connected to low AC source impedance. To avoid problems with loop stability source inductance should be low. Also, the input capacitors (Cin) should be placed close to the converter input pins to decouple distribution inductance. However, the external input capacitors are chosen for suitable ripple handling capability. The input capacitors (Cin) are recommended by low ESR capacitors of 2.2uF for 5Vin and 12Vin models or 4.7uF for 24Vin models. Testing Circuit for reflected ripple current as shown in Figure4 represents typical measurement methods. C1 and L1 simulate a typical DC source impedance. The input reflected-ripple current is measured by current probe to oscilloscope with a simulated source Inductance (L1).

L1: 12uF

C1: 2.2uF Tantalum capacitor for 5Vin and 12Vin models or 4.7uFCeramic capacitor for 24Vin models

Cin: NC

Figure4 Input Reflected-Ripple Test Setup

6.5 Test Set-Up

The basic test set-up to measure parameters such as efficiency and load regulation is shown in Figure5. When testing the modules under any transient conditions please ensure that the transient response of the source is sufficient to power the equipment under test. We can calculate the

- Efficiency
- Load regulation and line regulation

The value of efficiency is defined as:

$$\eta = \frac{V_o \times I_o}{V_{in} \times I_{in}} \times 100\%$$

Where:

V_o is output voltage, I_o is output current, V_{in} is input voltage, I_{in} is input current The value of load regulation is defined as:

$$Load.reg = \frac{V_{FL} - V_{ML}}{V_{ML}} \times 100\%$$

Where:

 V_{FL} is the output voltage at full load V_{ML} is the output voltage at 20%full load

Line regulation is per 1.0% change in input voltage. The value of line regulation is defined as:

$$Line.reg = \frac{\frac{V_{HL} - V_{LL}}{V_{NOM}} \times 100\%}{20}$$

Where:

 V_{HL} is the output voltage of maximum input voltage at full load

 $V_{\mbox{\scriptsize LL}}$ is the output voltage of minimum input voltage at full load

 V_{NOM} is the output voltage of nominal input voltage at full load

Figure5 EC1TAN Series Single output Test Setup

6.6 Output Ripple and Noise Measurement

The test set-up for noise and ripple measurements is shown in Figure6. A coaxial cable was used to prevent impedance mismatch reflections disturbing the noise readings at higher frequencies. Measurements are taken with output appropriately loaded and all ripple/noise specifications are from D.C. to 20MHz Band Width. The output ripple/noise is measured with 0.33uF ceramic capacitor across output. The ripple and noise is measured by BNC at 50mm to 75mm (2" to 3") from the module.

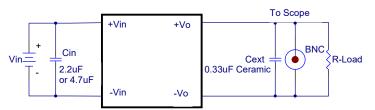
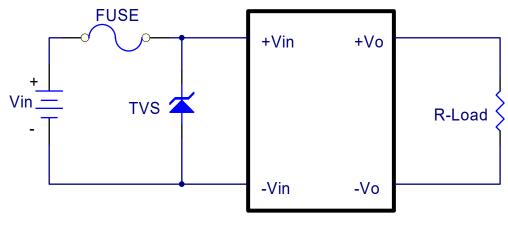


Figure6 Output Voltage Ripple and Noise Measurement Set-up

6.7 Output Capacitance


The EC1TAN series converters provide unconditional stability with or without external capacitors. For good transient response low ESR output capacitors should be located close to the point of load. These series converters are designed to work with load capacitance to see technical specifications.

7. Safety & EMC

7.1 Input Fusing and Safety Considerations.

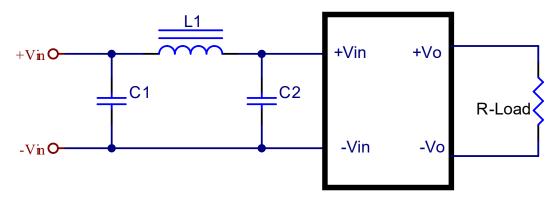

The EC1TAN series converters have not an internal fuse. However, to achieve maximum safety and system protection, always use an input line fuse. We recommended a time delay fuse 0.5A for all models. Figure7 circuit is recommended by a Transient Voltage Suppressor diode across the input terminal to protect the unit against surge or spike voltage and input reverse voltage.

Figure7 Input Protection

7.2 EMC Considerations

EMI Test standard: EN 55032 Class A and Class B Conducted Emission Test Condition: Input Voltage: Nominal, Output Load: Full Load

Figure8 Connection Circuit for Conducted EMI Testing

	Class A				Class B	
Model No.	C1	C2	L1	C1	C2	L1
EC1TAN Series	4.7uF/50V 1210	4.7u/50V 1210	3.3uH	10uF/50V 1210	10uF/50V 1210	7.5uH

Note:

All of capacitors are ceramic capacitors

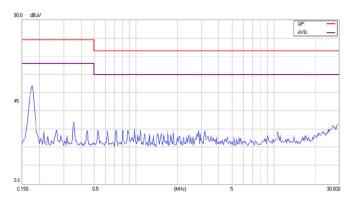
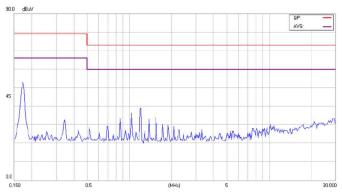



Figure9-1 EMI Conducted Class A for EC1TA01N

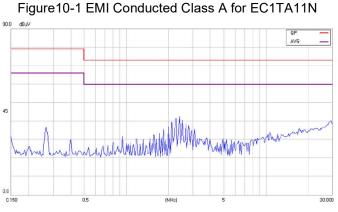


Figure11-1 EMI Conducted Class A for EC1TA21N

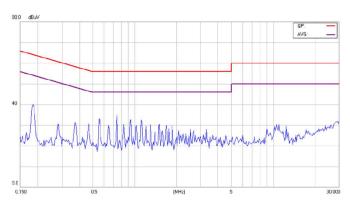
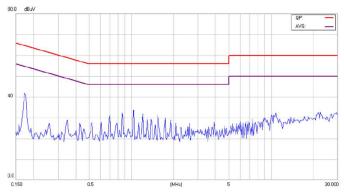



Figure9-2 EMI Conducted Class B for EC1TA01N

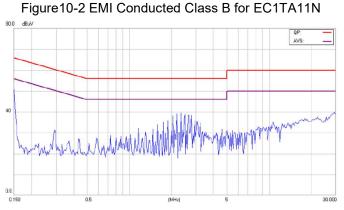
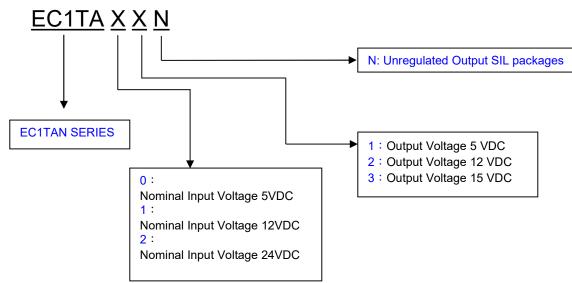



Figure 11-2 EMI Conducted Class B for EC1TA21N

8. Part Number

9. Mechanical Outline Diagrams

9.1 Mechanical Outline Diagrams

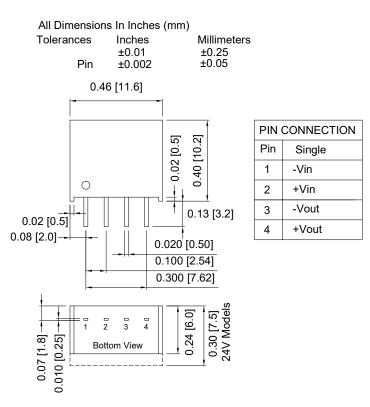


Figure12 EC1TAN Mechanical Outline Diagram

9.2 Packaging Details

The EC1TAN series SIL version are supplied in Tube. Modules are shipped in quantities for EC1TA0XN, EC1TA1XN 28 of 28 modules for EC1TA2XN of 26 modules (17.2*9*340mm) per Tube. Details of tube dimensions are shown below.

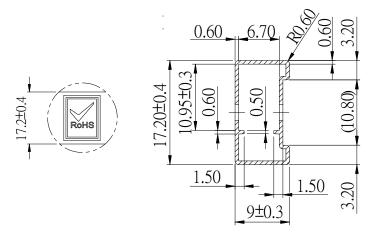


Figure13 SIL Packages Tube for EC1TA0XN and EC1TA1xN

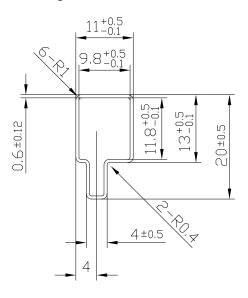


Figure14 SIL Packages Tube for EC1TA2XN

Headquarters:

14F, No.306, Sec.4, Hsin Yi Rd. Taipei, Taiwan Tel: 886-2-27086210 Fax: 886-2-27029852 E-mail: <u>sales@cincon.com</u> Web Site: https://www.cincon.com

CINCON ELECTRONICS CO., LTD. Factory:

No. 8-1, Fu Kung Rd. Fu Hsing Industrial Park Fu Hsing Hsiang, ChangHua Hsien, Taiwan Tel: 886-4-7690261 Fax: 886-4-7698031

Cincon North America:

1655Mesa Verde Ave. Ste 180 Ventura, CA93003 Tel: 805-639-3350 Fax: 805-639-4101 E-mail: <u>info@cincon.com</u>