

Application Note V14

ISOLATED DC-DC Converter EC3SB SERIES APPLICATION NOTE

Approved By:

Department	Approved By	Checked By	Written By
Research and Development Department	Jacky	Tim	Joyce
Design Quality Department	Benny	JoJo	

Application Note V14

Content

1. INTRODUCTION	3
2. DC-DC CONVERTER FEATURES	3
3. ELECTRICAL BLOCK DIAGRAM	3
4. TECHNICAL SPECIFICATIONS	5
5. MAIN FEATURES AND FUNCTIONS	9
5.1 Operating Temperature Range	9
5.2 Over Current Protection	9
5.3 Remote On/Off	9
6. APPLICATIONS	9
6.1 Recommended Layout PCB Footprints and Soldering Information	9
6.2 Power De-Rating Curves for EC3SB Series	11
6.3 Efficiency vs. Load Curves	12
6.4 Input Capacitance at the Power Module	16
6.5 Test Set-Up	16
6.6 Output Voltage Adjustment	16
6.7 Output Ripple and Noise Measurement	17
6.8 Output Capacitance	17
7. SAFETY & EMC	18
7.1 Input Fusing and Safety Considerations.	18
7.2 EMC Considerations	18
8. PART NUMBER	21
9. MECHANICAL SPECIFICATIONS	22

Application Note V14

1. Introduction

The EC3SB series offer 15 watts of output power in a 1.00x1.00x0.4 inches Copper packages. The EC3SB series has a 2:1 wide input voltage range of 9-18, 18-36 and 36-75VDC and provides a precisely regulated output. This series has features such as high efficiency, 1500VDC of isolation and allows an ambient operating temperature range of -40 °C to 85 °C (de-rating above 71 °C). The features include short circuit protection and remote on/off control. All models are very suitable for distributed power architectures, telecommunications, battery operated equipment and industrial applications.

2. DC-DC Converter Features

- 15W Isolated Output
- Efficiency to 90%
- 2:1 Input Range
- Regulated Outputs
- Fixed Switching Frequency
- Input Under Voltage Protection
- Over Current Protection
- Remote On/Off
- Continuous Short Circuit Protection
- Conductive EMI Meets EN55032 Class A
- Without Tantalum Capacitors Inside
- Safety Meets IEC/EN/UL 62368-1

3. Electrical Block Diagram

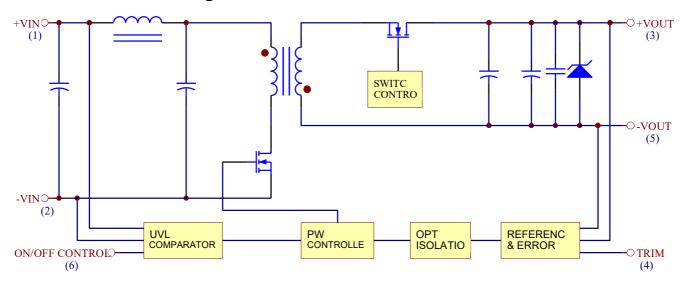


Figure 1 Electrical Block Diagram for Single Output Modules

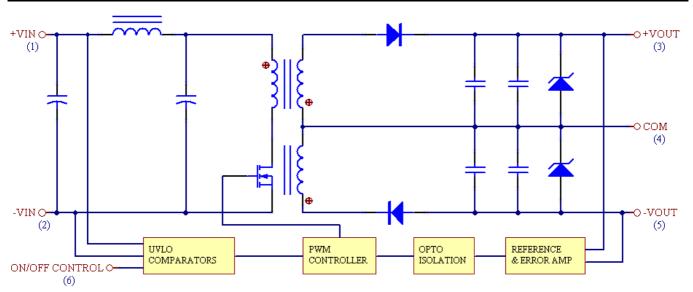


Figure 2 Electrical Block Diagram for Dual Output Modules

Application Note V14

4. Technical Specifications

(All specifications are typical at nominal input, full load at 25℃ unless otherwise noted.)

ABSOLUTE MAXIMUM RATINGS

PARAMETER	NOTES and CONDITIONS	Device	Min.	Typical	Max.	Units
Input Voltage						
		12Vin	-0.7		18	
Continuous		24Vin	-0.7		36	V_{dc}
		48Vin	-0.7		75	
		12Vin			25	
Transient	100ms	24Vin			50	V _{dc}
		48Vin			100	
Operating Ambient Temperature	De-rating, above 71°C	All	-40		+85	°C
Case Temperature		All			105	°C
Storage Temperature		All	-55		+125	°C
Input/Output Isolation Voltage	1 minute	All	1500			V_{dc}

INPUT CHARACTERISTICS

PARAMETER	NOTES and CONDITIONS	Device	Min.	Typical	Max.	Units
		12Vin	9	12	18	
Operating Input Voltage		24Vin	18	24	36	V_{dc}
		48Vin	36	48	75	
	100% Load, V _{in} =9V for 12XXX	12Vin			1960	
Maximum Input Current	100% Load, V _{in} =18V for 24XXX	24Vin			969	mA
	100% Load, V _{in} =36V for 48XXX	48Vin			484	
		12S33		90		
		12S05		85		
		12S12		70		
		12S15		70		
		12D05		45		
		12D12		45		
		12D15		45		
		24S33		50		
		24S05		50		
		24S12		20		
No-Load Input Current	V _{in} =Nominal input	24S15		20		mA
		24D05		25		
		24D12		25		
		24D15		25		
		48S33		25		
		48S05		30		
		48S12		20		
		48S15		20		
		48D05		20		
		48D12		20		
		48D15		20		
		12Vin		8.8		
Turn-On Voltage Threshold		24Vin		17		V_{dc}
		48Vin		34		

Application Note V14

PARAMETER	NOTES and CONDITIONS	Device	Min.	Typical	Max.	Units
		12Vin		8		
Turn-Off Voltage Threshold		24Vin		16		V_{dc}
		48Vin		32		
		12Vin		0.2		
Lockout Hysteresis Voltage		24Vin		0.5		V_{dc}
		48Vin		1		
Inrush Current (I ² t)		All			0.1	A ² s
Input Reflected-Ripple Current	P-P thru 12uH inductor, 5Hz to 20MHz	All			30	mA

OUTPUT CHARACTERISTIC

PARAMETER	NOTES and CONDITIONS	Device	Min.	Typical	Max.	Units
		Vo=3.3V	3.2505	3.3	3.3495	
		Vo=5.0V	4.925	5.0	5.075	
		Vo=12V	11.82	12	12.18	
Output Voltage Set Point	V _{in} =Nominal Vin , I₀=I₀ max., T₀=25°C	Vo=15V	14.77	15	15.225	Vdc
		Vo=±5V	4.925	5.0	5.075	
		Vo=±12V	11.82	12	12.18	
		Vo=±15V	14.77	15	15.225	
Output Voltage Regulation						
		DIP Single			±0.2	
Load Regulation	l₀=l₀ min. to l₀ max.	SMD			±0.5	%
		Single				
		Dual DIP			±1.0	
		Single			±0.2	
Line Regulation	Vin=low line to high line	SMD			±0.3	%
		Single Dual			±0.5	_
Temperature Coefficient	T _c =-40°C to 85°C	All			±0.03	%/°C
Output Voltage Ripple and Noise	1640 0 10 00 0	All			10.00	707 0
Peak-to-Peak		DIP			50	
	Full load, 20MHz bandwidth	SMD			120	mV
		Vo=3.3V			4	
		Vo=5.0V			3	
		Vo=12V			1.25	
Operating Output Current Bangs		Vo=15V			1.23	Α
Operating Output Current Range						A
		Vo=±5V			±1.5	
		Vo=±12V			±0.625	
		Vo=±15V			±0.5	
Output DC Current-Limit Inception	Output Voltage =90% V _{o nominal}	All	110	130	140	%
		Vo=3.3V			4000	
		Vo=5.0V			3000	
		Vo=12V			1250	
Maximum Output Capacitance	Full load, resistance	Vo=15V			1000	uF
		Vo=±5V			1470	
		Vo=±12V			660	
		Vo=±15V			550	
		V 0-± 10 V			550	

Application Note V14

DYNAMIC CHARACTERISTICS

PARAMETER	NOTES and CONDITIONS	Device	Min.	Typical	Max.	Units
Output Voltage Current Transient	0.1A/us					
Step Change in Output Current	50% to 75% and 75% to 100% of I _o max.	All			±4	%
Setting Time (within 1% Vo nominal)	di/dt=0.1A/us	All			250	us
Turn-On Delay and Rise Time						
Turn-On Delay Time, From On/Off Control	V _{on/off} to 10%V _{o,set}	All		10		ms
Turn-On Delay Time, From Input	V _{in} , min. to 10%V _{o,set}	All		10		ms
Output Voltage Rise Time	10%V _{o,set} to 90%V _{o,set}	All		5	•	ms

EFFICIENCY

PARAMETER	NOTES and CONDITIONS	Device	Min. Typical Max	. Units
		12S33	85	
		12S05	88	
		12S12	88	
		12S15	88	
		12D05	85	
		12D12	87	
		12D15	88	
		24S33	86	
		24S05	89	
		24S12	90	
00% Load		24S15	90	%
		24D05	86	
		24D12	88	
		24D15	89	
		48S33	86	
		48\$05	88	
		48S12	90	
		48S15	90	
		48D05	86	
		48D12	88	
		48D15	89	

ISOLATION CHARACTERISTICS

PARAMETER	NOTES and CONDITIONS	Device	Min.	Typical	Max.	Units
Input to Output	1 minutes	All			1500	Vdc
Isolation Resistance		All			1000	МΩ
Isolation Capacitance		All		1000		pF

FEATURE CHARACTERISTICS

PARAMETER	NOTES and CONDITIONS	Device	Min.	Typical	Max.	Units
Switching Frequency		All		350		KHz

Application Note V14

PARAMETER	NOTES and CONDITIONS	Device	Min.	Typical	Max.	Units
On/Off Control, Positive Remote On/Off Logic						1
Logic Low (Module Off)	V _{on/off} at I _{on/off} =1.0mA	All	0		1.2	V
Logic High (Module On)	V _{on/off} at I _{on/off} =0.1uA	All	5.5 or open circuit		75	V
On/Off Control, Negative Remote On/Off Logic						
Logic High (Module On)	V _{on/off} at I _{on/off} =1.0mA	All		N/A		V
Logic Low (Module Off)	V _{on/off} at I _{on/off} =0.0uA			N/A		V
On/Off Current (for Both Remote On/Off Logic)	I _{on/off} at V _{on/off} =0.0V	All			1	mA
Leakage Current (for Both Remote On/Off Logic)	Logic high, V _{on/off} =15V	All			100	uA
0.50		12Vin		10	16	mA
Off Converter Input Current	Shutdown input idle current	24Vin 48Vin		5	10	mA
Output Voltage Trim Range	P _{out} =max. rated power		-10		+10	%
		Vo=3.3V		3.9		
		Vo=5.0V		6.2		
		Vo=12V		15		
Output Over Voltage Protection		Vo=15V		18		V
		Vo=±5V		±6.2		
		Vo=±12V		±15		
		Vo=±15V		±18		
Over-Temperature Shutdown		All		N/A		°C

GENERAL SPECIFICATIONS

PARAMETER	NOTES and CONDITIONS	Device	Min.	Typical	Max.	Units
INLIBE	Io=100%of Io.max;Ta=25°C per MIL- HDBK-217F	All		1.2		M hours
Weight		All		18	•	grams

Application Note V14

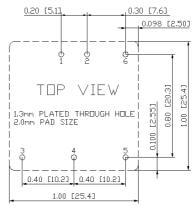
5. Main Features and Functions

5.1 Operating Temperature Range

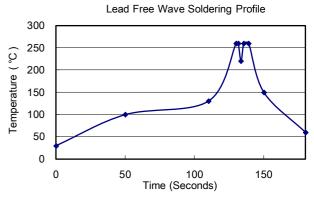
The EC3SB series converters can be operated by a wide ambient temperature range from -40°C to 85°C (de-rating above 71°C) The standard model has a Copper case and case temperature can not over 105°C at normal operating.

5.2 Over Current Protection

All different voltage models have full continuous short-circuit protection. To provide protection in a fault condition, the unit is equipped with internal over-current protection. The unit operates normally once the fault condition is removed. At the point of current-limit inception, the converter will go into over current protection.


5.3 Remote On/Off

The EC3SB series allows the user to switch the module on and off electronically with the remote **on/off** feature. All models are available in "positive logic" versions. The converter turns on if the remote **on/off** pin is high (>5.5Vdc to 75Vdc or open circuit). Setting the pin low (0 to <1.2Vdc) will turn the converter off. The signal level of the remote **on/off** input is defined with respect to ground. If not using the remote **on/off** pin, leave the pin open (converter will be on).

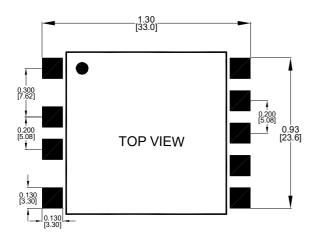

6. Applications

6.1 Recommended Layout PCB Footprints and Soldering Information

The system designer or the end user must ensure that other components and metal in the vicinity of the converter meet the spacing requirements to which the system is approved. Low resistance and low inductance PCB layout traces are the norm and should be used where possible. Due consideration must also be given to proper low impedance tracks between power module, input and output grounds. The recommended footprints and soldering profiles are shown as Figure 3.

Note: Dimensions are in inches (millimeters)

Wave Soldering Profiles for DIP


Note:

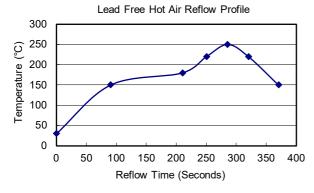

- 1. Soldering Materials: Sn/Cu/Ni
- 2. Ramp up rate during preheat: 1.4°C/Sec (from 50°C to 100°C)
- 3. Soaking temperature: 0.5°C/Sec (from 100°C to 130°C), 60±20 seconds
- 4. Peak temperature: 260°C, above 250°C 3~6 Seconds
- 5. Ramp up rate during cooling: -10.0°C/Sec (from 260°C to 150°C)

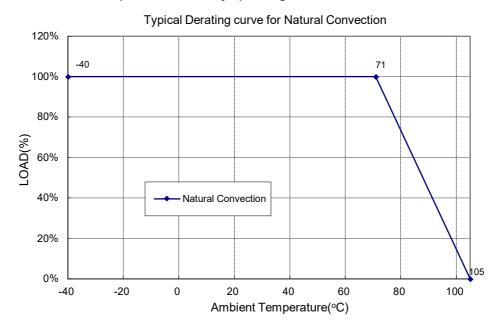
Figure3 Recommended PCB Layout Footprints and Wave Soldering Profiles for SB packages

Application Note V14

Wave Soldering Profiles for SMD

Note:

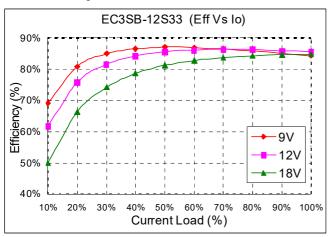
- 1. Soldering Paste: SHENMAO PF610-P (Sn/Ag/Cu)
- 2. Ramp up rate during preheat: 1.33°C/Sec (from 30°C to 150°C)
- 3. Soaking temperature: 0.25°C/Sec (from 150°C to 180°C), 160±10 seconds
- 4. Ramp up rate during reflow: 1.00°C/Sec (from 180°C to 220°C)
- 5. Peak temperature: 250°C above 220°C 70 Seconds
- 6. Ramp up rate during cooling: -1.4°C/Sec (From 220°C to 150°C)

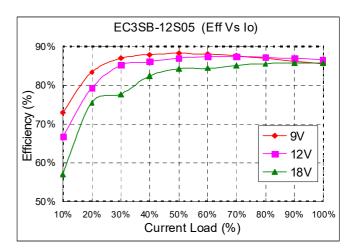


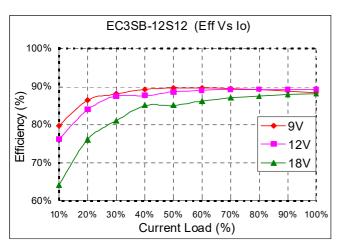
Application Note V14

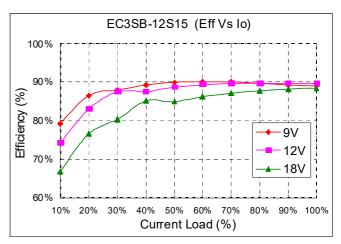
6.2 Power De-Rating Curves for EC3SB Series

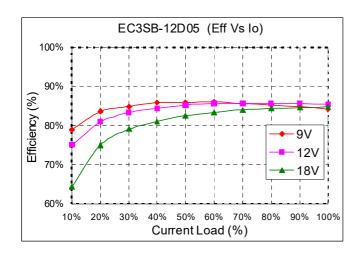
Operating Ambient temperature Range: -40°C ~ 85°C without de-rating.

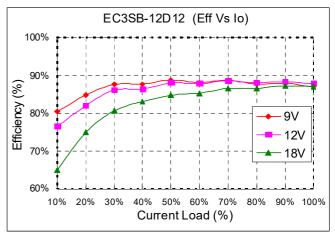

Maximum case temperature under any operating condition should not exceed 105°C.

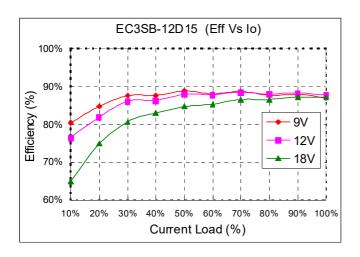


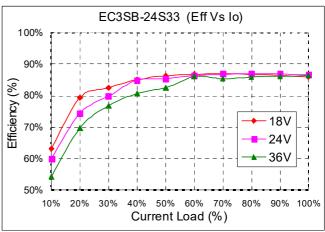


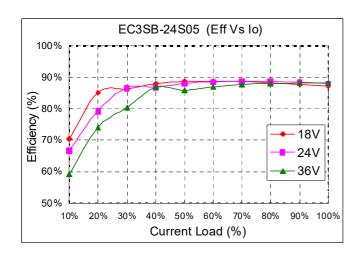

Application Note V14

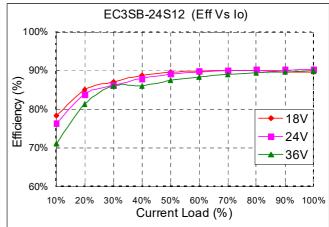

6.3 Efficiency vs. Load Curves

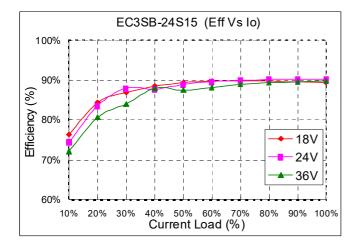


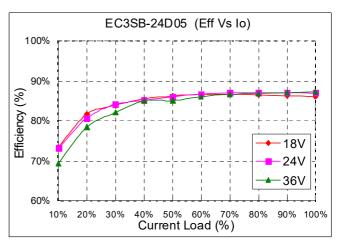


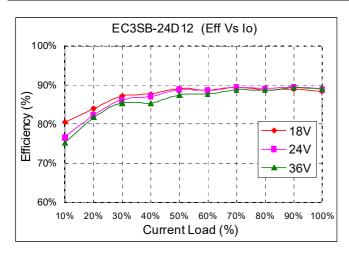


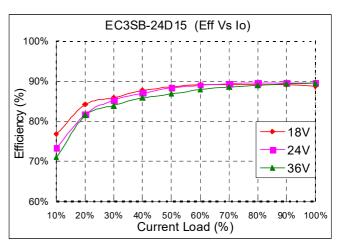


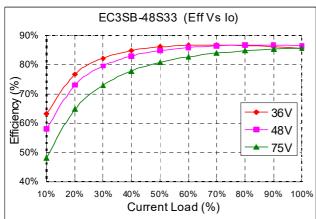


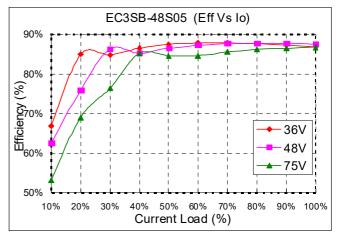


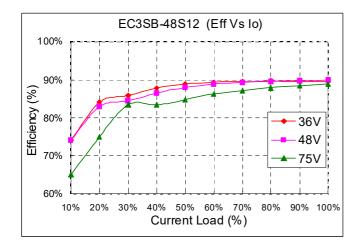


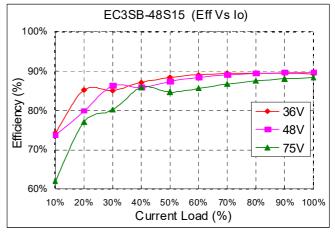


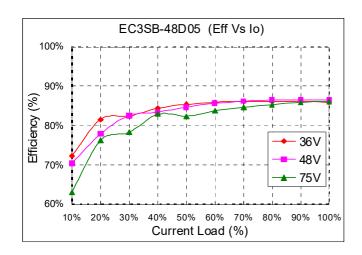


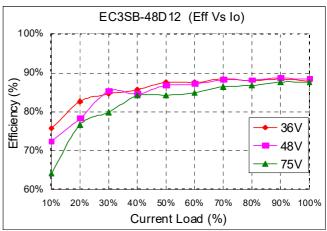


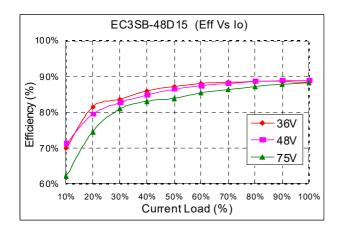


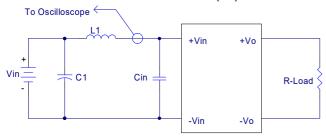












Application Note V14

6.4 Input Capacitance at the Power Module

The converters must be connected to low AC source impedance. To avoid problems with loop stability source inductance should be low. Also, the input capacitors (Cin) should be placed close to the converter input pins to de-couple distribution inductance. However, the external input capacitors are chosen for suitable ripple handling capability. Low ESR capacitors are good choice. Circuit as shown in Figure4 represents typical measurement methods for reflected ripple current. C1 and L1 simulate a typical DC source impedance. The input reflected-ripple current is measured by current probe to oscilloscope with a simulated source Inductance (L1).

L1: 10uH C1: None

Cin: 22uF ESR<0.66ohm @100KHz

Figure 4 Input Reflected-Ripple Test Setup

6.5 Test Set-Up

The basic test set-up to measure parameters such as efficiency and load regulation is shown in Figure 5. When testing the modules under any transient conditions please ensure that the transient response of the source is sufficient to power the equipment under test. We can calculate the

- Efficiency
- Load regulation and line regulation

The value of efficiency is defined as:

$$\eta = \frac{Vo \times Io}{Vin \times Iin} \times 100\%$$

Where

Vo is output voltage, lo is output current, Vin is input voltage, lin is input current

The value of load regulation is defined as:

$$Load.reg = \frac{VFL - VNL}{VNI} \times 100\%$$

Where

V_{FL} is the output voltage at full load V_{NL} is the output voltage at 10% load The value of line regulation is defined as:

$$Line.reg = \frac{V_{HL} - V_{LL}}{V_{LL}} \times 100\%$$

Where:

V_{HL} is the output voltage of maximum input voltage at full load

V_{LL} is the output voltage of minimum input voltage at full load

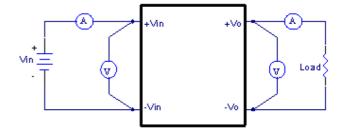


Figure 5 EC3SB Series Test Setup

6.6 Output Voltage Adjustment

In order to trim the voltage up or down one needs to connect the trim resistor either between the trim pin and -Vo for trim-up and between trim pin and +Vo for trim-down. The output voltage trim range is ±10%. This is shown in Figures 1 and 2:

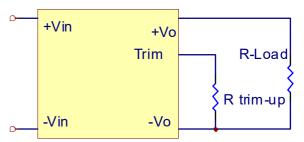


Figure 1 Trim-up Voltage Setup

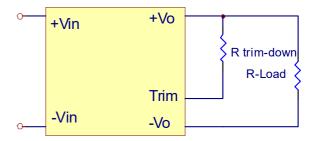


Figure 2 Trim-down Voltage Setup

1. The value of Rtrim-up defined as:
$$Rtrim-up=(\frac{Vr\times R1\times (R2+R3)}{(Vo-Vo,nom)\times R2})-Rt\ (K\Omega)$$

Application Note V14

Where:

R trim-up is the external resistor in Kohm

V_{o,nom} is the nominal output voltage

V_o is the desired output voltage

R1, Rt, R2, R3 and V_r are internal to the unit and are defined in

Table 1.

Model	Output	R1	R2	R3	Rt	Vr
Number	Voltage(V)	(Kohm)	(Kohm)	(Kohm)	(Kohm)	
EC3SB12S03						
EC3SB24S03	3.3	2.70	1.8	0.27	9.1	1.25
EC3SB48S03						
EC3SB12S05						
EC3SB24S05	5.0	2.32	2.32	0	8.2	2.5
EC3SB48S05						
EC3SB12S12						
EC3SB24S12	12.0	6.8	2.4	2.32	22	2.5
EC3SB48S12						
EC3SB12S15						
EC3SB24S15	15.0	8.06	2.4	3.9	27	2.5
EC3SB48S15						

Table 1 – Trim up and Trim down Resistor Values

For example, to trim-up the output voltage of 5.0V module

(EC3SB12S05) by 10% to 5.5V, R trim-up is calculated as follows:

$$V_o - V_{o. nom} = 5.5 - 5.0 = 0.5V$$

R1 = 2.32 Kohm

R2 = 2.32 Kohm

R3 = 0 Kohm

Rt = 8.2 Kohm, Vr= 2.5

$$Rtrim - up = (\frac{2.5 \times 2.32 \times (2.32 + 0)}{0.5 \times 2.32}) - 8.2$$
$$= 3.06(KQ)$$

The value of R trim-down defined as:

$$Rtrim - down = R1 \times (\frac{Vr \times R1}{(Vo, nom - Vo) \times R2} - 1)$$
$$- Rt (K\Omega)$$

Where:

R trim-down is the external resistor in Kohm

Vo, nom is the nominal output voltage

Vo is the desired output voltage

R1, Rt, R2, R3 and Vr are internal to the unit and are

defined in Table 1

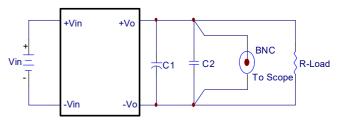
For example, to trim-down the output voltage of 5.0V module

(EC3SB12S05) by 10% to 4.5V, R trim-down is calculated as follows:

$$V_{o,nom} - V_o = 5.0 - 4.5 = 0.5V$$

R1 = 2.32 Kohm

R2 = 2.32 Kohm


R3 = 0 Kohm

Rt = 8.2 Kohm, Vr= 2.5

Rtrim - down =
$$2.32 \times (\frac{(2.5 \times 2.32)}{0.5 \times 2.32} - 1) - 8.2$$

= $1.08 (K\Omega)$

6.7 Output Ripple and Noise Measurement

The test set-up for noise and ripple measurements is shown in Figure 6. A coaxial cable was used to prevent impedance mismatch reflections disturbing the noise readings at higher frequencies. Measurements are taken with output appropriately loaded and all ripple/noise specifications are from D.C. to 20MHz Band Width.

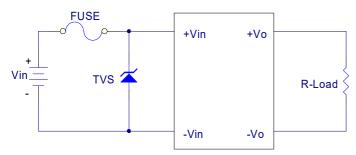
Note:

C1: 10uF tantalum capacitor C2: 1uF Ceramic capacitor

Figure Output Voltage Ripple and Noise Measurement Set-Up

6.8 Output Capacitance

The EC3SB series converters provide unconditional stability with or without external capacitors. For good transient response low ESR output capacitors should be located close to the point of load. These series converters are designed to work with load capacitance to see technical specifications.



Application Note V14

7. Safety & EMC

7.1 Input Fusing and Safety Considerations.

The EC3SB series converters have not an internal fuse. However, to achieve maximum safety and system protection, always use an input line fuse. We recommended a time delay fuse 4A for 12Vin models, 2A for 24Vin models, 1A 48Vin modules. Figure 7 circuit is recommended by a Transient Voltage Suppressor diode across the input terminal to protect the unit against surge or spike voltage and input reverse voltage.

Figure7 Input Protection

7.2 EMC Considerations

EMI Test standard: EN 55032 Class A and Class B Conducted Emission

Test Condition: Input Voltage: Nominal, Output Load: Full Load

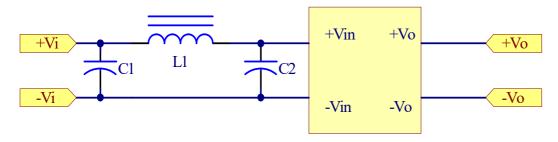
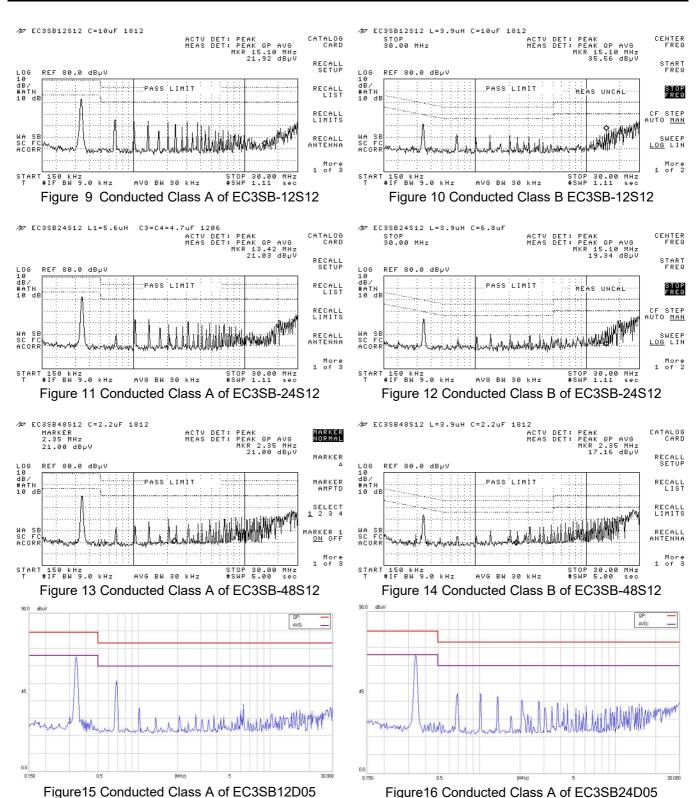


Figure8 Connection circuit for conducted EMI testing



Application Note V14

EN55032 class A		EN55032 class B				
Model No.	C1	C2	L1	C1	C2	L1
EC3SB12S33	10uF/25V 1812	NC	NC	10uF /25V 1812	NC	3.9uH
EC3SB12S05	10uF/25V 1812	NC	NC	10uF /25V 1812	NC	3.9uH
EC3SB12S12	10uF/25V 1812	NC	NC	10uF /25V 1812	NC	3.9uH
EC3SB12S15	10uF/25V 1812	NC	NC	10uF /25V 1812	NC	3.9uH
EC3SB12D05	10uF/25V 1812	NC	NC	10uF /25V 1812	NC	3.9uH
EC3SB12D12	10uF/25V 1812	NC	NC	10uF /25V 1812	NC	3.9uH
EC3SB12D15	10uF/25V 1812	NC	NC	10uF /25V 1812	NC	3.9uH
EC3SB24S33	6.8uF/50V 1812	NC	NC	6.8uF /25V 1812	NC	3.9uH
EC3SB24S05	6.8uF/50V 1812	NC	NC	6.8uF/50V 1812	NC	3.9uH
EC3SB24S12	6.8uF/50V 1812	NC	NC	6.8uF/50V 1812	NC	3.9uH
EC3SB24S15	6.8uF/50V 1812	NC	NC	6.8uF/50V 1812	NC	3.9uH
EC3SB24D05	6.8uF/50V 1812	NC	NC	6.8uF/50V 1812	NC	3.9uH
EC3SB24D12	6.8uF/50V 1812	NC	NC	6.8uF/50V 1812	NC	3.9uH
EC3SB24D15	6.8uF/50V 1812	NC	NC	6.8uF/50V 1812	NC	3.9uH
EC3SB48S33	2.2uF/100V 1812	NC	NC	2.2uF/100V 1812	NC	3.9uH
EC3SB48S05	2.2uF/100V 1812	NC	NC	2.2uF/100V 1812	NC	3.9uH
EC3SB48S12	2.2uF/100V 1812	NC	NC	2.2uF/100V 1812	NC	3.9uH
EC3SB48S15	2.2uF/100V 1812	NC	NC	2.2uF/100V 1812	NC	3.9uH
EC3SB48D05	2.2uF/100V 1812	NC	NC	2.2uF/100V 1812	NC	3.9uH
EC3SB48D12	2.2uF/100V 1812	NC	NC	2.2uF/100V 1812	NC	3.9uH
EC3SB48D15	2.2uF/100V 1812	NC	NC	2.2uF/100V 1812	NC	3.9uH

Note: All of capacitors are ceramic capacitors.

Application Note V14

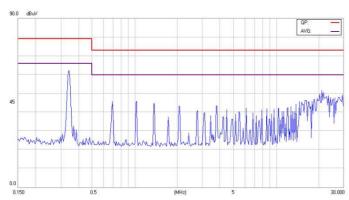
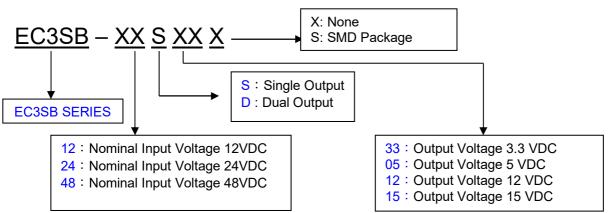
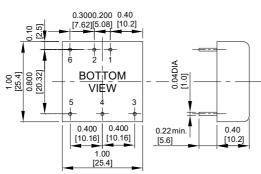
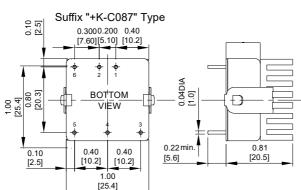



Figure 17 Conducted Class A of EC3SB48D05

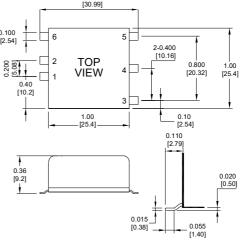
8. Part Number




Application Note V14

9. Mechanical Specifications

NOTE:Pin Size is 0.04 ± 0.004 Inch $(1.0\pm0.1$ mm)DIA All Dimensions In Inches (mm)
Tolerances Inches: X.XX= ±0.02 , X.XXX= ±0.010 Millimeters: X.X= ±0.5 , X.XX= ±0.25


THROUGH-HOLE PACKAGE

	PIN CONNECTION					
Pin	Function					
	Single	Dual				
1	+Input	+Input				
2	-Input	-Input				
3	+V Output	+V Output				
4	Trim	Common				
5	-V Output	-V Output				
6	Remote	Remote				

SMD- PACKAGE 1.22 [30.99]

CINCON ELECTRONICS CO., LTD.

Headquarters:

14F, No.306, Sec.4, Hsin Yi Rd. Taipei, Taiwan

Tel: 886-2-27086210 Fax: 886-2-27029852

E-mail: sales@cincon.com.tw
Web Site: https://www.cincon.com

Factory:

No. 8-1, Fu Kung Rd. Fu Hsing Industrial Park Fu Hsing Hsiang, ChangHua Hsien, Taiwan Tel: 886-4-7690261 Fax: 886-4-7698031

Cincon North America:

1655Mesa Verde Ave. Ste 180 Ventura, CA93003

Tel: 805-639-3350 Fax: 805-639-4101 E-mail: info@cincon.com