

# **Application Note V14**

# ISOLATED DC-DC Converter EC3SBW SERIES APPLICATION NOTE



### **Approved By:**

| Department                             | Approved By | Checked By | Written By |
|----------------------------------------|-------------|------------|------------|
| Research and Development<br>Department | Jacky       | Astray     | Sean       |
| Design Quality<br>Department           | Benny       | JoJo       |            |



# **Application Note V14**

# **Content**

| 1. INTRODUCTION                                                 | 3  |
|-----------------------------------------------------------------|----|
| 2. DC-DC CONVERTER FEATURES                                     | 3  |
| 3. ELECTRICAL BLOCK DIAGRAM                                     | 3  |
| 4. TECHNICAL SPECIFICATIONS                                     | 5  |
| 5. MAIN FEATURES AND FUNCTIONS                                  | 9  |
| 5.1 Operating Temperature Range                                 | 9  |
| 5.2 Remote On/Off                                               | 9  |
| 5.3 UVLO (Under Voltage Lock Out)                               | 9  |
| 5.4 Over Current Protection                                     | 9  |
| 5.5 Over Voltage Protection                                     | 9  |
| 6. APPLICATIONS                                                 | 9  |
| 6.1 Recommended Layout PCB Footprints and Soldering Information | 9  |
| 6.2 Power De-Rating Curves for EC3SBW Series                    | 10 |
| 6.3 Efficiency vs. Load Curves                                  | 12 |
| 6.4 Input Capacitance at the Power Module                       | 15 |
| 6.5 Test Set-Up                                                 | 15 |
| 6.6 Output Voltage Adjustment                                   | 15 |
| 6.7 Output Ripple and Noise Measurement                         | 17 |
| 6.8 Output Capacitance                                          | 17 |
| 7. SAFETY & EMC                                                 | 18 |
| 7.1 Input Fusing and Safety Considerations.                     | 18 |
| 7.2 EMC Considerations                                          | 18 |
| 8. PART NUMBER                                                  | 21 |
| 9. MECHANICAL SPECIFICATIONS                                    | 21 |



### **Application Note V14**

### 1. Introduction

The EC3SBW series offer 15 watts of output power in a 1.00x1.00x0.4 inches copper packages. The EC3SBW series has a 4:1 wide input voltage range of 9-36 and 18-75VDC and provides a precisely regulated output. This series has features such as high efficiency, 1500VDC of isolation and allows an ambient operating temperature range of -40°C to 85°C (de-rating above 71°C). The modules are fully protected against input UVLO (under voltage lock out), output over-current, over-voltage protection and continuous short circuit conditions. Furthermore, the standard control functions include remote on/off and adjustable output voltage. All models are very suitable for distributed power architectures, telecommunications, battery operated equipment and industrial applications.

#### 2. DC-DC Converter Features

- 15W Isolated Output
- 1"x1"x0.4" Shielded Metal Case
- Efficiency to 88%
- 4:1 Input Range
- Regulated Outputs
- Fixed Switching Frequency
- Input Under Voltage Protection
- Over Current Protection
- Remote On/Off
- Continuous Short Circuit Protection
- Without Tantalum Capacitors inside
- Safety Meets IEC/EN/UL 62368-1

### 3. Electrical Block Diagram

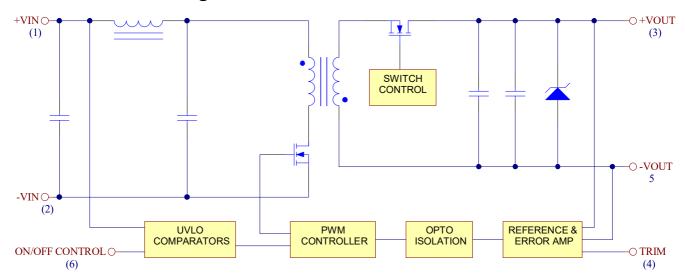



Figure 1 Electrical Block Diagram of XXS33 and XXS05



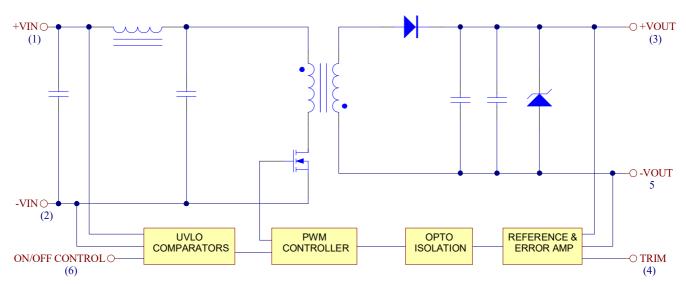



Figure 2 Electrical Block Diagram of XXS12 and XXS15

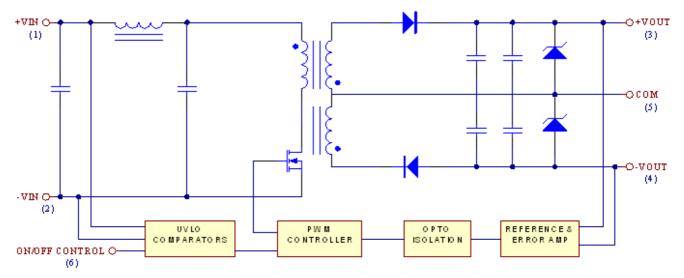



Figure 3 Electrical Block Diagram of dual output module



# **Application Note V14**

### 4. Technical Specifications

(All specifications are typical at nominal input, full load at 25°C unless otherwise noted.)

### **ABSOLUTE MAXIMUM RATINGS**

| PARAMETER                      | NOTES and CONDITIONS | Device            | Min. | Typical | Max. | Units           |
|--------------------------------|----------------------|-------------------|------|---------|------|-----------------|
| Input Voltage                  |                      |                   |      |         |      |                 |
| Continuous                     |                      | 24V <sub>in</sub> | -0.3 |         | 36   | $V_{dc}$        |
|                                |                      | 48V <sub>in</sub> | -0.3 |         | 75   | V dc            |
| Transient                      | 100ms                | $24V_{in}$        |      |         | 50   | V.              |
| Transient                      | TOOTIS               | 48V <sub>in</sub> |      |         | 100  | V <sub>dc</sub> |
| Operating Ambient Temperature  | Derating, above 71°C | All               | -40  |         | +85  | °C              |
| Case Temperature               |                      | All               |      |         | 105  | °C              |
| Storage Temperature            |                      | All               | -55  |         | +125 | °C              |
| Input/Output Isolation Voltage | 1 Minute             | All               |      |         | 1500 | V <sub>dc</sub> |

### **INPUT CHARACTERISTICS**

| PARAMETER                      | NOTES and CONDITIONS                 | Device            | Min. | Typical | Max. | Units            |
|--------------------------------|--------------------------------------|-------------------|------|---------|------|------------------|
| On anating I and the Maltage   |                                      | 24V <sub>in</sub> | 9    | 24      | 36   | .,               |
| Operating Input Voltage        |                                      | 48V <sub>in</sub> | 18   | 48      | 75   | $V_{dc}$         |
| Maximum Input Current          | 100% Load, V <sub>in</sub> =9V       | 24V <sub>in</sub> |      |         | 2100 | mA               |
|                                | 100% Load, V <sub>in</sub> =18V      | 48V <sub>in</sub> |      |         | 1000 | IIIA             |
|                                |                                      | 24S33             |      | 60      |      |                  |
|                                |                                      | 24S05             |      | 70      |      |                  |
|                                |                                      | 24S12             |      | 30      |      |                  |
|                                |                                      | 24S15             |      | 30      |      |                  |
|                                | V -Nominal input                     | 24D05             |      | 30      |      |                  |
|                                |                                      | 24D12             |      | 30      |      |                  |
| No Load Input Current          |                                      | 24D15             |      | 30      |      | mA               |
| No-Load Input Current          | V <sub>in</sub> =Nominal input       | 48S33             |      | 40      |      | IIIA             |
|                                |                                      | 48S05             |      | 40      |      |                  |
|                                |                                      | 48S12             |      | 20      |      |                  |
|                                |                                      | 48S15             |      | 20      |      |                  |
|                                |                                      | 48D05             |      | 20      |      |                  |
|                                |                                      | 48D12             |      | 20      |      |                  |
|                                |                                      | 48D15             |      | 20      |      |                  |
| Off Converter Input Current    | Shutdown input idle current          | All               |      | 4       | 10   | mA               |
| Inrush Current (I2t)           | As per ETS300 132-2                  | All               |      |         | 0.1  | A <sup>2</sup> s |
| Input Reflected-Ripple Current | P-P thru 12uH inductor, 5Hz to 20MHz | All               |      |         | 30   | mA               |



# **Application Note V14**

### **OUTPUT CHARACTERISTIC**

| PARAMETER                           | NOTES and CONDITIONS                                                                                  | Device  | Min.   | Typical | Max.   | Units    |
|-------------------------------------|-------------------------------------------------------------------------------------------------------|---------|--------|---------|--------|----------|
|                                     |                                                                                                       | Vo=3.3V | 3.2505 | 3.3     | 3.3495 |          |
|                                     |                                                                                                       | Vo=5V   | 4.925  | 5       | 5.075  |          |
|                                     |                                                                                                       | Vo=12V  | 11.82  | 12      | 12.18  |          |
| Output Voltage Set Point            | V <sub>in</sub> =Nominal V <sub>in</sub> , I <sub>o</sub> =I <sub>o max.</sub> , T <sub>c</sub> =25°C | Vo=15V  | 14.775 | 15      | 15.225 | $V_{dc}$ |
|                                     |                                                                                                       | Vo=±5V  | 4.925  | 5       | 5.075  |          |
|                                     |                                                                                                       | Vo=±12V | 11.82  | 12      | 12.18  |          |
|                                     |                                                                                                       | Vo=±15V | 14.775 | 15      | 15.225 |          |
| Output Voltage Balance              | V <sub>in</sub> =Nominal, I <sub>o</sub> =I <sub>o max.</sub> , T <sub>c</sub> =25°C                  | Dual    |        |         | ±2.0   | %        |
| Output Voltage Regulation           |                                                                                                       |         |        |         |        |          |
| Load Regulation                     | I₀= Full load to min. load                                                                            | Single  |        |         | ±0.2   | %        |
| Load Negulation                     | 1 <sub>0</sub> - Full load to Hill. load                                                              | Dual    |        |         | ±1.0   | 70       |
| Line Regulation                     | V <sub>in</sub> =High line to low line full load                                                      | Single  |        |         | ±0.2   | %        |
| Line Regulation                     | V <sub>in</sub> -1 light line to low line full load                                                   | Dual    |        |         | ±0.5   | 70       |
| Cross Regulation                    | Load cross variation 10%/100%                                                                         | Dual    |        |         | ±5     | %        |
| Temperature Coefficient             | T <sub>c</sub> =-40°C to 85°C                                                                         | All     |        |         | ±0.03  | %/°C     |
| Output Voltage Ripple and Noise 5Hz | to 20MHz Bandwidth                                                                                    |         |        |         |        |          |
|                                     |                                                                                                       | Vo=3.3V |        |         | 75     |          |
|                                     |                                                                                                       | Vo=5V   |        |         | 75     |          |
|                                     | E 111 1001111 1 1 1 1 1 1 1 1 1 1 1 1 1                                                               | Vo=12V  |        |         | 75     |          |
| Peak-to-Peak                        | Full load,20MHz bandwidth 10uF tantalum and 1uF ceramic capacitor                                     | Vo=15V  |        |         | 100    | mV       |
|                                     | tantalum and rui ceramic capacitor                                                                    | Vo=±5V  |        |         | 100    |          |
|                                     |                                                                                                       | Vo=±12V |        |         | 100    |          |
|                                     |                                                                                                       | Vo=±15V |        |         | 100    |          |
|                                     |                                                                                                       | Vo=3.3V | 0      |         | 4000   |          |
|                                     |                                                                                                       | Vo=5V   | 0      |         | 3000   |          |
|                                     |                                                                                                       | Vo=12V  | 0      |         | 1250   |          |
| Operating Output Current Range      |                                                                                                       | Vo=15V  | 0      |         | 1000   | mA       |
|                                     |                                                                                                       | Vo=±5V  | 0      |         | ±1500  |          |
|                                     |                                                                                                       | Vo=±12V | 0      |         | ±625   |          |
|                                     |                                                                                                       | Vo=±15V | 0      |         | ±500   |          |
| Output DC Current-Limit Inception   | Output voltage=90% V <sub>o, nominal</sub>                                                            | All     | 110    | 140     | 175    | %        |
|                                     |                                                                                                       | Vo=3.3V |        |         | 4000   |          |
|                                     |                                                                                                       | Vo=5V   |        |         | 3000   |          |
|                                     |                                                                                                       | Vo=12V  |        |         | 1250   |          |
| Maximum Output Capacitance          | Full load, resistance                                                                                 | Vo=15V  |        |         | 1000   | uF       |
|                                     |                                                                                                       | Vo=±5V  |        |         | 1500   |          |
|                                     |                                                                                                       | Vo=±12V |        |         | 625    |          |
|                                     |                                                                                                       | Vo=±15V |        |         | 470    |          |



# **Application Note V14**

### **DYNAMIC CHARACTERISTICS**

| PARAMETER                                        | NOTES and CONDITIONS                            | Device | Min. | Typical | Max. | Units |
|--------------------------------------------------|-------------------------------------------------|--------|------|---------|------|-------|
| Output Voltage Current Transient                 |                                                 |        |      |         |      |       |
| Step Change in Output Current                    | 75% to 100% of I <sub>o max.</sub>              | All    |      |         | ±5   | %     |
| Setting Time (within 1% V <sub>o nominal</sub> ) | di/dt=0.1A/us                                   | All    |      |         | 250  | us    |
| Turn-On Delay and Rise Time                      |                                                 |        |      |         |      |       |
| Turn-On Delay Time, From On/Off Control          | V <sub>on/off</sub> to 10% V <sub>o,set</sub>   | All    |      | 10      |      | ms    |
| Turn-On Delay Time, From Input                   | V <sub>in,min</sub> . to 10% V <sub>o,set</sub> | All    |      | 10      |      | ms    |
| Output Voltage Rise Time                         | 10% V <sub>o,set</sub> to 90%Vo,set             | All    |      | 10      |      | ms    |

### **EFFICIENCY**

| PARAMETER | NOTES and CONDITIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Device | Min. Typical Max. | Units |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------------------|-------|
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 24S33  | 87                |       |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 24S05  | 87                |       |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 24S12  | 87                |       |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 24S15  | 88                |       |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 24D05  | 85                |       |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 24D12  | 87                |       |
| 100% Load | V <sub>in</sub> =Nominal V <sub>in</sub> , I <sub>o</sub> =I <sub>o max.</sub> , T <sub>c</sub> =25°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 24D15  | 88                | %     |
|           | The resumment of the results of the | 48S33  | 88                | , ,   |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 48S05  | 88                |       |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 48S12  | 87                |       |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 48S15  | 87                |       |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 48D05  | 85                |       |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 48D12  | 87                |       |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 48D15  | 87                |       |

### **ISOLATION CHARACTERISTICS**

| PARAMETER             | NOTES and CONDITIONS | Device | Min. | Typical | Max. | Units    |
|-----------------------|----------------------|--------|------|---------|------|----------|
| Input to Output       | 1 Minutes            | All    |      |         | 1500 | $V_{dc}$ |
| Isolation Resistance  |                      | All    | 1000 |         |      | МΩ       |
| Isolation Capacitance |                      | All    |      | 1000    |      | pF       |

### **FEATURE CHARACTERISTICS**

| PARAMETER                              | NOTES and CONDITIONS                              | Device | Min.                      | Typical | Max. | Units |
|----------------------------------------|---------------------------------------------------|--------|---------------------------|---------|------|-------|
| Switching Frequency                    |                                                   | All    |                           | 400     |      | KHz   |
| On/Off Control, Positive Remote On/Off | Logic                                             |        |                           |         |      |       |
| Logic Low (Module Off)                 | V <sub>on/off</sub> at I <sub>on/off</sub> =1.0mA | All    | 0                         |         | 1.2  | V     |
| Logic High (Module On)                 | V <sub>on/off</sub> at I <sub>on/off</sub> =0.1uA | All    | 3.5 or<br>Open<br>Circuit |         | 75   | V     |



# **Application Note V14**

| PARAMETER                                      | NOTES and CONDITIONS                             | Device  | Min. | Typical | Max. | Units |
|------------------------------------------------|--------------------------------------------------|---------|------|---------|------|-------|
| Switching Frequency                            |                                                  | All     |      | 400     |      | KHz   |
| On/Off Current (for Both Remote On/Off Logic)  | I <sub>on/off</sub> at V <sub>on/off</sub> =0.0V | All     |      | 0.3     | 1    | mA    |
| Leakage Current (for Both Remote On/Off Logic) | Logic high, V <sub>on/off</sub> =15V             | All     |      |         | 30   | uA    |
| Off Converter Input Current                    | Shutdown input idle current                      | All     |      | 4       | 10   | mA    |
| Output Voltage Trim Range                      | P <sub>out</sub> =max rated power                | Single  | -10  |         | +10  | %     |
|                                                |                                                  | Vo=3.3V |      | 3.9     |      |       |
|                                                |                                                  | Vo=5V   |      | 6.2     |      |       |
|                                                |                                                  | Vo=12V  |      | 15      |      |       |
| Output Over Voltage Protection                 | Zener or TVS Clamp                               | Vo=15V  |      | 18      |      | Vdc   |
|                                                |                                                  | Vo=±5V  |      | ±6.2    |      |       |
|                                                |                                                  | Vo=±12V |      | ±15     |      |       |
|                                                |                                                  | Vo=±15V |      | ±18     |      |       |

### **GENERAL SPECIFICATIONS**

| PARAMETER | NOTES and CONDITIONS                                     | Device  | Min. | Typical | Max. | Units |
|-----------|----------------------------------------------------------|---------|------|---------|------|-------|
| MTRE      | I <sub>o</sub> =100% of I <sub>o.max</sub> .;Ta=25°C per | S33&S05 |      | 950     |      | K     |
| MTBF      | MIL-HDBK-217F                                            | Others  |      | 1300    |      | hours |
| Weight    |                                                          | All     |      | 18      |      | grams |



### **Application Note V14**

### 5. Main Features and Functions

#### 5.1 Operating Temperature Range

The EC3SBW series converters can be operated by a wide ambient temperature range from -40°C to 85°C (de-rating above 71°C). The standard model has a Copper case and case temperature can not over 105°C at normal operating.

#### 5.2 Remote On/Off

The EC3SBW series allows the user to switch the module on and off electronically with the remote on/off feature. All models are available in "positive logic" versions. The converter turns on if the remote on/off pin is high (>3.5Vdc or open circuit). Setting the pin low (0 to <1.2Vdc) will turn the converter off. The signal level of the remote on/off input is defined with respect to ground. If not using the remote on/off pin, leave the pin open (converter will be on).

### 5.3 UVLO (Under Voltage Lock Out)

Input under voltage lockout is standard on the EC3SBW unit. The unit will shut down when the input voltage drops below a threshold, and the unit will operate when the input voltage goes above the upper threshold.

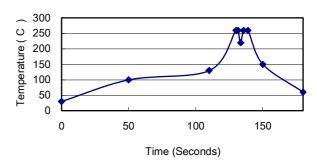
#### 5.4 Over Current Protection

All models have internal over current and continuous short circuit protection. The unit operates normally once the fault condition is removed. At the point of current limit inception, the converter will go into hiccup mode protection.

#### 5.5 Over Voltage Protection

The over-voltage protection consists of a zener diode to limiting the out voltage.

### 6. Applications


# 6.1 Recommended Layout PCB Footprints and Soldering Information

The system designer or the end user must ensure that other components and metal in the vicinity of the converter meet the spacing requirements to which the system is approved. Low resistance and low inductance PCB layout traces are the norm and should be used where possible. Due consideration must also be given to proper low impedance tracks between power module, input and output grounds. The recommended footprints and soldering profiles are shown as Figure 4.



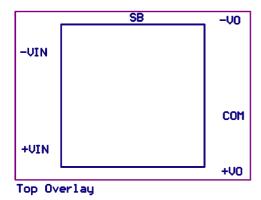
Note: Dimensions are in inches (millimeters)

Lead Free Wave Soldering Profile

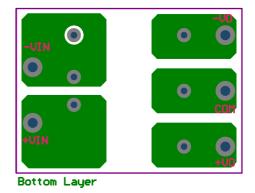


#### Note:

- 1. Soldering Materials: Sn/Cu/Ni
- 2. Ramp up rate during preheat: 1.4°C/Sec (From 50°C to 100°C)
- 3. Soaking temperature: 0.5°C/Sec (From 100°C to 130°C), 60±20 seconds
- 4. Peak temperature: 260°C, above 250°C 3~6 Seconds
- 5. Ramp up rate during cooling: -10.0°C/Sec (From 260°C to 150°C)

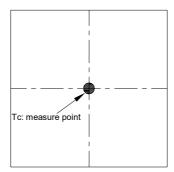

Figure 4 Recommended PCB Layout Footprints and Wave Soldering Profiles for SB packages



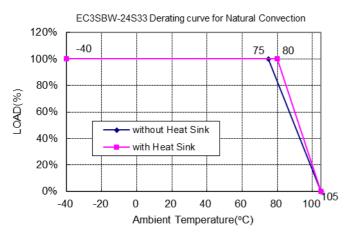

# **Application Note V14**

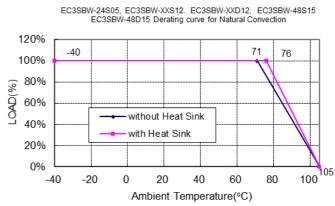
### 6.2 Power De-Rating Curves for EC3SBW Series

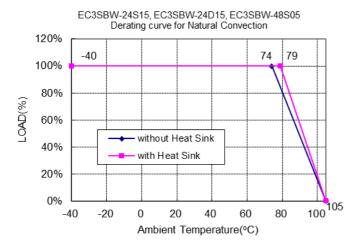
Operating Ambient Temperature Range : -40°C ~ 85°C (Drating Above 71°C).

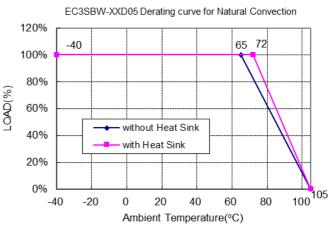


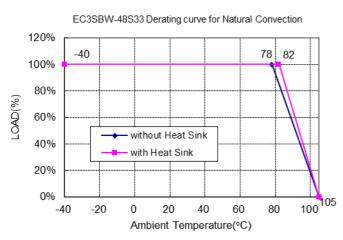

Thermal test board top





Thermal test board bottom


Maximum case temperature under any operating condition should not exceed 105°C.

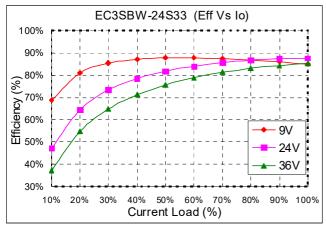


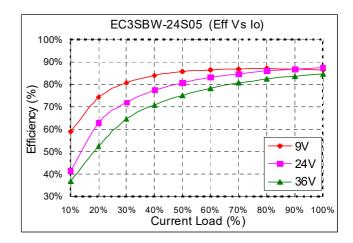







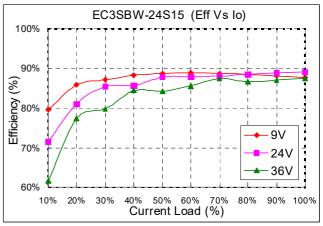


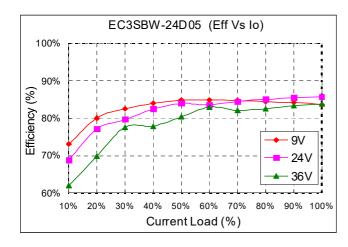



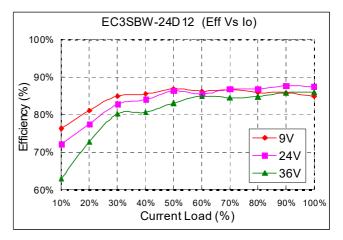





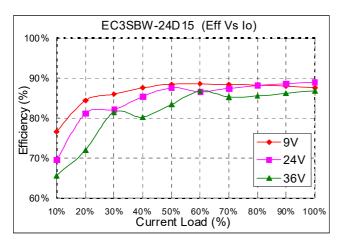


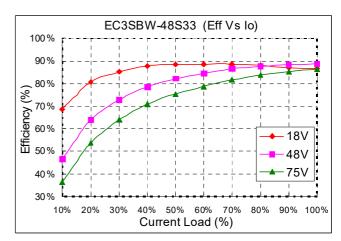

# **Application Note V14**

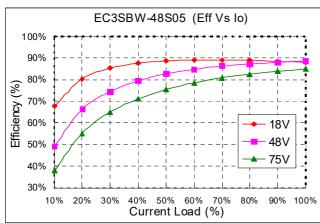

### 6.3 Efficiency vs. Load Curves

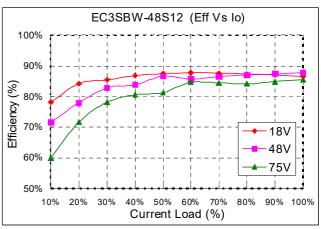


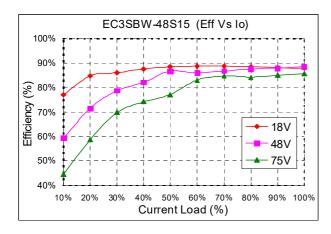


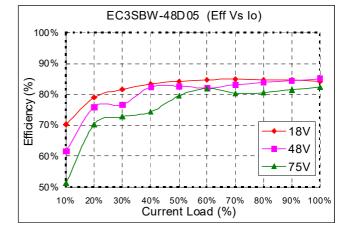



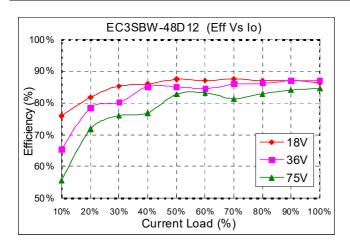



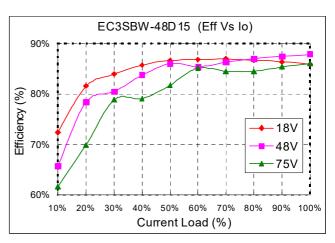


















### **Application Note V14**

# 6.4 Input Capacitance at the Power Module

The converters must be connected to low AC source impedance. To avoid problems with loop stability source inductance should be low. Also, the input capacitors (Cin) should be placed close to the converter input pins to de-couple distribution inductance. However, the external input capacitors are chosen for suitable ripple handling capability. Low ESR capacitors are good choice. Circuit as shown in Figure5 represents typical measurement methods for reflected ripple current. C1 and L1 simulate a typical DC source impedance. The input reflected-ripple current is measured by current probe to oscilloscope with a simulated source Inductance (L1)



L1: 12uH C1: None

Cin: 33uF ESR<0.7ohm @100KHz

Figure 5 Input Reflected-Ripple Test Setup

#### 6.5 Test Set-Up

The basic test set-up to measure parameters such as efficiency and load regulation is shown in Figure 6. When testing the modules under any transient conditions please ensure that the transient response of the source is sufficient to power the equipment under test. We can calculate the

- Efficiency
- Load regulation and line regulation

The value of efficiency is defined as:

$$\eta = \frac{Vo \times Io}{V_{IN} \times I_{IN}} \times 100\%$$

Where

Vo is output voltage, lo is output current, V<sub>IN</sub> is input voltage, l<sub>IN</sub> is input current.

The value of load regulation is defined as:

$$Load.reg = \frac{V_{FL} - V_{NL}}{V_{NI}} \times 100\%$$

Where

V<sub>FL</sub> is the output voltage at full load V<sub>NL</sub> is the output voltage at 10% load

The value of line regulation is defined as:

$$Line.reg = \frac{V_{HL} - V_{LL}}{V_{LL}} \times 100\%$$

Where

V<sub>HL</sub> is the output voltage of maximum input voltage at full load.

 $V_{\text{LL}}$  is the output voltage of minimum input voltage at full load.

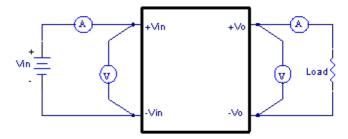



Figure6 EC3SBW Series Test Setup

### 6.6 Output Voltage Adjustment

In order to trim the voltage up or down one needs to connect the trim resistor either between the trim pin and -Vo for trim-up and between trim pin and +Vo for trim-down. The output voltage trim range is  $\pm 10\%$ . This is shown in Figures 7 and 8:

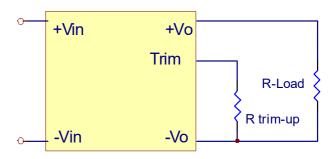



Figure 7 Trim-up Voltage Setup

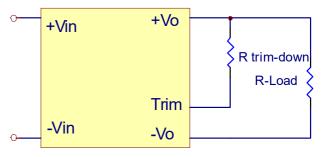



Figure 8 Trim-down Voltage Setup



### **Application Note V14**

#### 1. The value of Rtrim-up defined as:

$$R_{trim-up} = \left(\frac{V_r \times R1 \times (R2 + R3)}{(V_O - V_{O,nom}) \times R2}\right) - Rt \text{ (K}\Omega)$$

#### Where

R trim-up is the external resistor in Kohm.

V<sub>O, nom</sub> is the nominal output voltage.

Vo is the desired output voltage.

R1, Rt, R2, R3 and Vr are internal to the unit and are defined in Table 1.

Table 1 - Trim up and Trim down Resistor Values

| Model Number               | Output<br>Voltage(V) | R1<br>(ΚΩ) | <b>R2</b><br>(ΚΩ) | R3<br>(ΚΩ) | <b>Rt</b><br>(ΚΩ) | Vr<br>(V) |
|----------------------------|----------------------|------------|-------------------|------------|-------------------|-----------|
| EC3SBW24S33<br>EC3SBW48S33 | 3.3                  | 2.74       | 1.8               | 0.27       | 9.1               | 1.24      |
| EC3SBW24S05<br>EC3SBW48S05 | 5.0                  | 2.32       | 2.32              | 0          | 8.2               | 2.5       |
| EC3SBW24S12<br>EC3SBW48S12 | 12.0                 | 6.8        | 2.4               | 2.32       | 22                | 2.5       |
| EC3SBW24S15<br>EC3SBW48S15 | 15.0                 | 8.06       | 2.4               | 3.9        | 27                | 2.5       |

For example, to trim-up the output voltage of 5.0V module (EC3SBW-24S05) by 10% to 5.5V, R trim-up is calculated as follows:

$$V_o - V_{o, nom} = 5.5 - 5.0 = 0.5V$$

R1 = 2.32 KΩ

R2 = 2.32 KΩ

 $R3 = 0 K\Omega$ 

Rt =  $8.2 \text{ K}\Omega$ ,

Vr= 2.5 V

$$R_{trim-up} = (\frac{2.5 \times 2.32 \times (2.32 + 0)}{0.5 \times 2.32}) - 8.2 = 3.4(K\Omega)$$

### 2. The value of R trim-down defined as:

$$R_{trim-down} = R1 \times (\frac{Vr \times R1}{(V_{o,nom} - V_{o}) \times R2} - 1) - Rt \text{ (K}\Omega)$$

#### Where

R trim-down is the external resistor in Kohm.

V<sub>O, nom</sub> is the nominal output voltage.

Vo is the desired output voltage.

R1, Rt, R2, R3 and Vr are internal to the unit and are defined in Table 1

For example, to trim-down the output voltage of 5.0V module (EC3SBW-12S05) by 10% to 4.5V, R trim-down is calculated as follows:

$$V_{O,nom} - V_{O} = 5.0 - 4.5 = 0.5V$$

 $R1 = 2.32 \text{ K}\Omega$ 

 $R2 = 2.32 \text{ K}\Omega$ 

 $R3 = 0 K\Omega$ 

 $Rt = 8.2 K\Omega$ 

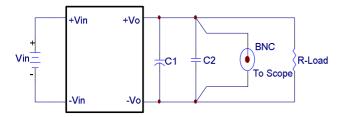
Vr= 2.5 V

$$R_{trim-down} = 2.32 \times (\frac{(2.5 \times 2.32)}{0.5 \times 2.32} - 1) - 8.2 = 1.08 \text{ (K}\Omega)$$

#### The typical value of R<sub>trim\_up</sub>

|           | 3.3V                    | 5V     | 12V    | 15V    |
|-----------|-------------------------|--------|--------|--------|
| Trim up % | $R_{trim\_up}(K\Omega)$ |        |        |        |
| 1%        | 109.30                  | 107.80 | 256.61 | 325.63 |
| 2%        | 50.10                   | 49.80  | 117.31 | 149.31 |
| 3%        | 30.37                   | 30.47  | 70.87  | 90.54  |
| 4%        | 20.50                   | 20.80  | 47.65  | 61.16  |
| 5%        | 14.58                   | 15.00  | 33.72  | 43.53  |
| 6%        | 10.63                   | 11.13  | 24.44  | 31.77  |
| 7%        | 7.81                    | 8.37   | 17.80  | 23.38  |
| 8%        | 5.70                    | 6.30   | 12.83  | 17.08  |
| 9%        | 4.06                    | 4.69   | 8.96   | 12.18  |
| 10%       | 2.74                    | 3.40   | 5.86   | 8.26   |

#### The typical value of Rtrim\_down


|             | 3.3V                        | 5V     | 12V    | 15V    |
|-------------|-----------------------------|--------|--------|--------|
| Trim down % | R <sub>trim_down</sub> (ΚΩ) |        |        |        |
| 1%          | 144.88                      | 105.48 | 372.59 | 416.08 |
| 2%          | 66.52                       | 47.48  | 171.89 | 190.51 |
| 3%          | 40.40                       | 28.15  | 105.00 | 115.32 |
| 4%          | 27.34                       | 18.48  | 71.55  | 77.72  |
| 5%          | 19.50                       | 12.68  | 51.48  | 55.17  |
| 6%          | 14.28                       | 8.81   | 38.10  | 40.13  |
| 7%          | 10.55                       | 6.05   | 28.54  | 29.39  |
| 8%          | 7.75                        | 3.98   | 21.37  | 21.33  |
| 9%          | 5.57                        | 2.37   | 15.80  | 15.07  |
| 10%         | 3.83                        | 1.08   | 11.34  | 10.05  |



# **Application Note V14**

### 6.7 Output Ripple and Noise Measurement

The test set-up for noise and ripple measurements is shown in Figure9. A coaxial cable was used to prevent impedance mismatch reflections disturbing the noise readings at higher frequencies. Measurements are taken with output appropriately loaded and all ripple/noise specifications are from D.C. to 20MHz Band Width.



Note:

C1: 10uF tantalum capacitor C2: 1uF Ceramic capacitor

Figure9 Output Voltage Ripple and Noise Measurement Set-Up

### 6.8 Output Capacitance

The EC3SBW series converters provide unconditional stability with or without external capacitors. For good transient response low ESR output capacitors should be located close to the point of load. These series converters are designed to work with load capacitance to see technical specifications.



# **Application Note V14**

### 7. Safety & EMC

### 7.1 Input Fusing and Safety Considerations.

The EC3SBW series converters have not an internal fuse. However, to achieve maximum safety and system protection, always use an input line fuse. We recommended a fast acting fuse 3.15A for 24Vin models and 1.5A for 48Vin models. Figure 10 circuit is recommended by a Transient Voltage Suppressor diode across the input terminal to protect the unit against surge or spike voltage and input reverse voltage.

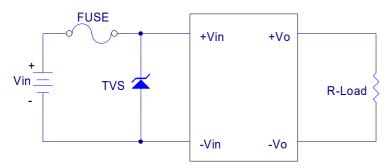
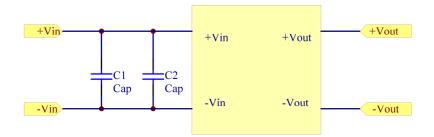
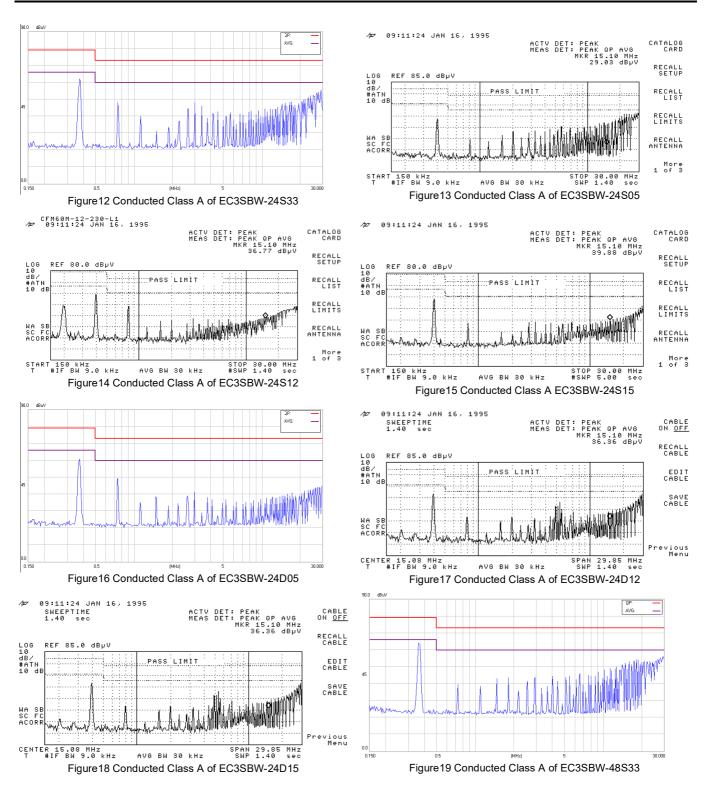



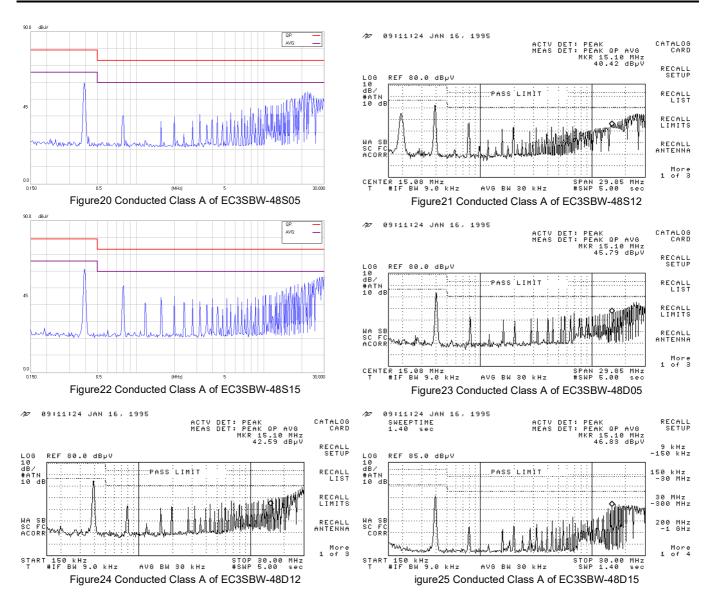

Figure 10 Input Protection

#### 7.2 EMC Considerations

EMI Test standard: EN55022/EN55032 Class A Conducted Emission Test Condition: Input Voltage: Nominal, Output Load: Full Load



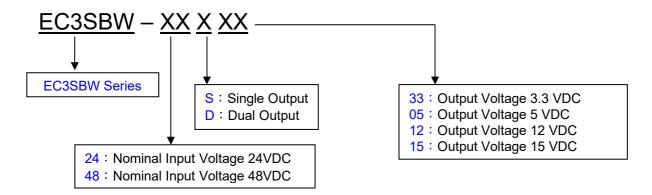

Figur11 Connection circuit for conducted EMI testing


|              | EN55022 class A |           |              |            |            |
|--------------|-----------------|-----------|--------------|------------|------------|
| Model No.    | C1              | C2        | Model No.    | C1         | C2         |
| EC3SBW-24S33 | 6.8uF/50V       | 6.8uF/50V | EC3SBW-48S33 | 2.2uF/100V | 2.2uF/100V |
| EC3SBW-24S05 | 6.8uF/50V       | 6.8uF/50V | EC3SBW-48S05 | 2.2uF/100V | 2.2uF/100V |
| EC3SBW-24S12 | 6.8uF/50V       | 6.8uF/50V | EC3SBW-48S12 | 2.2uF/100V | 2.2uF/100V |
| EC3SBW-24S15 | 6.8uF/50V       | 6.8uF/50V | EC3SBW-48S15 | 2.2uF/100V | 2.2uF/100V |
| EC3SBW-24D05 | 6.8uF/50V       | 6.8uF/50V | EC3SBW-48D05 | 2.2uF/100V | 2.2uF/100V |
| EC3SBW-24D12 | 6.8uF/50V       | 6.8uF/50V | EC3SBW-48D12 | 2.2uF/100V | 2.2uF/100V |
| EC3SBW-24D15 | 6.8uF/50V       | 6.8uF/50V | EC3SBW-48D15 | 2.2uF/100V | 2.2uF/100V |

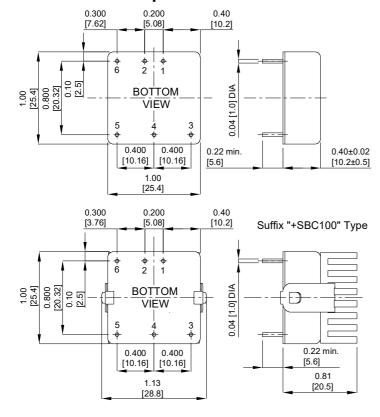
Note: All of capacitors are ceramic capacitors and 1812 size.










### **Application Note V14**

#### 8. Part Number



### 9. Mechanical Specifications



NOTE:Pin Size is  $0.04\pm0.004$  Inch  $[1.0\pm0.1$  mm]DIA All Dimensions In Inches [mm] Tolerances Inches: X.XX= $\pm0.04$ , X.XXX= $\pm0.010$  Millimeters: X.X= $\pm1.0$ , X.XX= $\pm0.25$ 

| PIN CONNECTION |           |           |  |
|----------------|-----------|-----------|--|
| PIN            | Single    | Dual      |  |
| 1              | +Input    | +Input    |  |
| 2              | -Input    | -Input    |  |
| 3              | +V Output | +V Output |  |
| 4              | Trim      | Common    |  |
| 5              | -V Output | -V Output |  |
| 6              | Remote    | Remote    |  |

### **CINCON ELECTRONICS CO., LTD.**

### **Headquarters:**

14F, No.306, Sec.4, Hsin Yi Rd.

Taipei, Taiwan Tel: 886-2-27086210 Fax: 886-2-27029852

E-mail: <a href="mailto:sales@cincon.com.tw">sales@cincon.com.tw</a>
Web Site: <a href="mailto:https://www.cincon.com">https://www.cincon.com</a>

#### Factory:

No. 8-1, Fu Kung Rd. Fu Hsing Industrial Park Fu Hsing Hsiang, ChangHua Hsien, Taiwan Tel: 886-4-7690261 Fax: 886-4-7698031

### **Cincon North America:**

1655Mesa Verde Ave. Ste 180 Ventura, CA93003 Tel: 805-639-3350

Fax: 805-639-4101 E-mail: info@cincon.com