

Application Note V10 September 2014

ISOLATED DC-DC Converter EC4AW-H6 SERIES APPLICATION NOTE

Approved By:

Department	Approved By	Checked By	Written By
Research and Development Department	Enoch	Eunice	Joyce
Quality Assurance Department	Jack	Benny	

Application Note V10 September 2014

Content

1. INTRODUCTION	3
2. DC-DC CONVERTER FEATURES	3
3. ELECTRICAL BLOCK DIAGRAM	3
4. TECHNICAL SPECIFICATIONS	4
5. MAIN FEATURES AND FUNCTIONS	7
5.1 Operating Temperature Range	7
5.2 UVLO (Under Voltage Lock Out)	7
5.3 Over Current Protection	7
6. APPLICATIONS	7
6.1 Recommended Layout PCB Footprints and Soldering Information	7
6.2 Power De-Rating Curves for EC4AW-H6 Series	7
6.3 Efficiency vs. Load Curves	8
6.4 Input Capacitance at the Power Module	10
6.5 Test Set-Up	10
6.6 Output Ripple and Noise Measurement	10
6.7 Output Capacitance	10
7. SAFETY & EMC	11
7.1 Input Fusing and Safety Considerations.	11
7.2 EMC Considerations	11
8. PART NUMBER	15
9 MECHANICAL SPECIFICATIONS	15

Application Note V10 September 2014

1. Introduction

The EC4AW-H6 series offer 5-6 watts of output power in a 24 pin DIP package. The EC4AW-H6 series has a 4:1 wide input voltage range of 9-36VDC and 18-72VDC, and provides a precisely regulated output. This series has features such as high isolation voltage and allows an ambient operating temperature range of -40°C to 71°C(de-rating above 71°C). The modules are fully protected against input UVLO (under voltage lock out), output short circuit and output overvoltage conditions. All models very suitable for distributed power architectures. telecommunications. battery operated equipment and industrial applications.

2. DC-DC Converter Features

- * 5-6W Isolated Output
- * DIP-24 Package
- * Regulated Outputs
- * Efficiency to 85%
- * Continuous Short Circuit Protection
- * I/O Isolation Voltage 6000VDC
- * Reinforced Insulation Rate for Working Voltage 300VAC
- * 5uA Leakage Current
- * EMI Meets EN55022 Class A
- * Safety Meets UL60950-1 and UL60601-1
- * CE Mark Meets 2004/108/EC

3. Electrical Block Diagram

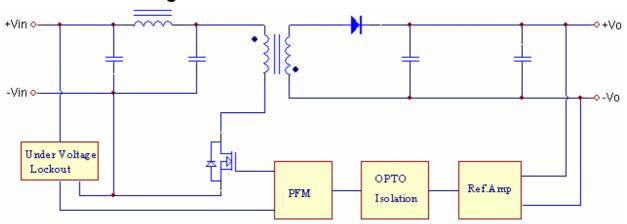


Figure 1 Electrical Block Diagram of single output module

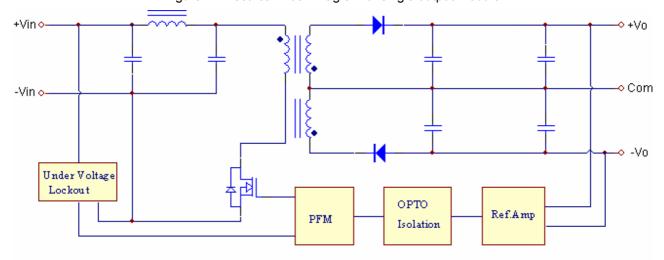


Figure 2 Electrical Block Diagram of dual output module

Application Note V10 September 2014

4. Technical Specifications

(All specifications are typical at nominal input, full load at 25°C unless otherwise noted.)

ABSOLUTE MAXIMUM RATINGS

PARAMETER	NOTES and CONDITIONS	Device	Min.	Typical	Max.	Units	
Input Voltage		1	1	1	1	ı	
Continuous		24Vin	-0.7		36	\/da	
Continuous		48Vin	-0.7		72	Vdc	
Transiant	100ma	24Vin			50	Vdc	
Transient	100ms	48Vin			100		
Operating Ambient Temperature	With de-rating, above 71℃	All	-40		+71	$^{\circ}\!\mathbb{C}$	
Case Temperature		All			+100	$^{\circ}\!\mathbb{C}$	
Storage Temperature		All	-40		+100	$^{\circ}\!\mathbb{C}$	
Input/Output Isolation Voltage	1 minute	All			6000	Vdc	
INPUT CHARACTERISTIC	S						
PARAMETER	NOTES and CONDITIONS	Device	Min.	Typical	Max.	Units	
Operation Innert Valtage		24Vin	9	24	36	\	
Operating Input Voltage		48Vin	18	48	72	Vdc	
Turn On Valtana Threathald		24Vin	8.2	8.5	8.8	\ /ala	
Turn-On Voltage Threshold		48Vin	16.5	17	17.5	Vdc	
T 0537 11 T 1 1 1		24Vin	7.7	8	8.3	\	
Turn-Off Voltage Threshold		48Vin	15.3	16	16.8	Vdc	
		24Vin		0.5		\	
Lockout Hysteresis Voltage		48Vin		1.0		Vdc	
Maximum Innut Current	Full load, Vin= 9V	24Vin		800		m ^	
Maximum Input Current	Full load, Vin=36V	48Vin		400		mA	
		24S05H6		10			
	Vin=24V	24S12H6		10			
	VIII-24 V	24D12H6		15			
No Load Input Current		24D15H6		15		m۸	
No-Load Input Current		48S05H6		5		mA	
	Vin=48V	48S12H6		5			
	VIII-40V	48D12H6		8			
		48D15H6		8			
Inrush Current (I ² t)	As per ETS300 132-2	All			0.01	A ² s	
Input Reflected-Ripple Current	P-P thru 12uH inductor, 5Hz to 20MHz	All		10		mA	
OUTPUT CHARACTERIST	TC						
PARAMETER	NOTES and CONDITIONS	Device	Min.	Typical	Max.	Units	
		Vo=5Vdc	4.925	5	5.075		
Output Voltage Set Point	Vin=nominal input, Io= Io _{max.}	Vo=12Vdc	11.82	12	12.18	Vdc	
Output Voltage Oct i Ollit	VIII—Horrinar input, 10— ro _{max.}	Vo=±12Vdc	±11.82	±12	±12.18	Vac	
		Vo=±15Vdc	±14.775	±15	±15.225		
Output Voltage Balance	Vin=nominal input, Io=Io _{max.}	Dual			±2.0	%	
Output Voltage Regulation							
Load Regulation	lo=full load to 10% load	Single	_		±0.5	%	
Load Negalation	lo=full load to 25% load	Dual			±1.0	/0	

Line Regulation	Vin=low line to high line, full load	All			±0.5	%
Temperature Coefficient	erature Coefficient Ta=-40° to 71° €				±0.05	%/°C
Output Voltage Ripple and Noise	(5Hz to 20MHz bandwidth)					
		24S05H6			100	
		48S05H6			100	
	Vin=Nominal Input, Io= Full Load	24S12H6				
Dook to Dook		24D12H6			120	m\/
Peak-to-Peak	(with 0.1uF MLCC)	48S12H6			120	mV
		48D12H6				
		24D15H6			150]
		48D15H6			150	
		24S05H6	100		1000	
		24S12H6	50		500	
		24D12H6	25		±250	
Operating Output Current Range		24D15H6	20		±200	m A
Operating Output Current Range		48S05H6	100		1000	mA
		48S12H6	50		500	
		48D12H6	25		±250	
		48D15H6	20		±200	
Output DC Current-Limit Inception	Vo=90% V _{O, nominal}	All	120			%
		24S05H6	0		1000	
		24S12H6	0		500	
		24D12H6	0 0		250	
Maximum Output Capacitance	Full load (resistive)	24D15H6	Ö		200	uF
Maximum Output Capacitance	rull load (lesistive)	48S05H6	0		1000	ur
		48S12H6	0 0		500	
		48D12H6	0		250	
		48D15H6	0		200	
DYNAMIC CHARACTERIS	TICS					
PARAMETER	NOTES and CONDITIONS	Device	Min.	Typical	Max.	Units
Output Voltage Current Transient						
Step Change in Output Current	75% to 100% of Io.max	All			±6	%
Setting Time (within 1% Vout nominal)	di/dt=0.1A/us	All			500	us
Turn-On Delay and Rise Time						
Turn-On Delay Time, From Input	Vin, min. to 10%Vo,set	All		0.5		ms
Output Voltage Rise Time	10%Vo, set to 90%Vo,set	All		1.0		ms

EFFICIENCY						
PARAMETER	NOTES and CONDITIONS	Device	Min.	Typical	Max.	Units
		24S05H6		80		
	Vin=24V	24S12H6		85		
	VIII-24V	24D12H6		84		
100% Load		24D15H6		84		%
100% Load		48S05H6		80		70
	Vin=48V	48S12H6		84		
	VIII-46 V	48D12H6		83		
		48D15H6		84		
ISOLATION CHARACT	TERISTICS					
PARAMETER	NOTES and CONDITIONS	Device	Min.	Typical	Max.	Units
Isolation Voltage	Input to Output, 1 minutes	All	6000			Vdc
Isolation Resistance	Input to Output	All	1000			МΩ
Isolation Capacitance	Input to Output (No Capacitor Between Input to Output)	All		40		pF
Reinforced Insulation	Creepage Distances	All	8			mm
Treimorceu msulation	Air Clearances	All	8			111111
FEATURE CHARACTE	ERISTICS					
PARAMETER	NOTES and CONDITIONS	Device	Min.	Typical	Max.	Units
Switching Frequency		All	100			KHz
GENERAL SPECIFICA	TIONS					
PARAMETER	NOTES and CONDITIONS	Device	Min.	Typical	Max.	Units
MTBF	lo=100% of lo.max; Ta=25° per MIL-HDBK-217F	All		TBD		M hours
Weight		All		13.1		grams

Application Note V10 September 2014

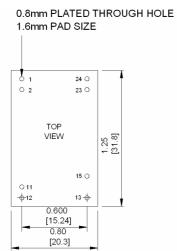
5. Main Features and Functions

5.1 Operating Temperature Range

The EC4AW-H6 series converters can be operated by a wide ambient temperature range from -40 $^{\circ}$ C to 71 $^{\circ}$ C (de-rating above 71 $^{\circ}$ C). The standard model has a plastic case and case temperature can not over 100 $^{\circ}$ C at normal operating.

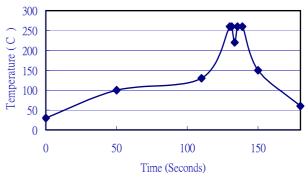
5.2 UVLO (Under Voltage Lock Out)

Input under voltage lockout is standard on the EC4AW-H6 unit. The unit will shut down when the input voltage drops below a threshold, and the unit will operate when the input voltage goes above the upper threshold.


5.3 Over Current Protection

All models have internal over current and continuous short circuit protection. The unit operates normally once the fault condition is removed. At the point of current limit inception, the converter will go into over current protection.

6. Applications


6.1 Recommended Layout PCB Footprints and Soldering Information

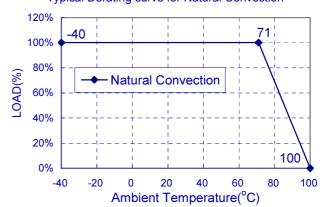
The system designer or the end user must ensure that other components and metal in the vicinity of the converter meet the spacing requirements to which the system is approved. Low resistance and low inductance PCB layout traces are the norm and should be used where possible. Due consideration must also be given to proper low impedance tracks between power module, input and output grounds. The recommended footprints and soldering profiles are shown below.

Note: Dimensions are in inches (millimeters)

Lead Free Wave Soldering Profile

Note:

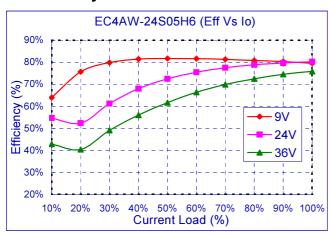
- 1. Soldering Materials: Sn/Cu/Ni
- 3. Soaking temperature: 0.5 $^{\circ}\text{C/Sec}$ (From 100 $^{\circ}\text{C}$ to 130 $^{\circ}\text{C}$), 60±20 seconds
- 4. Peak temperature: 260°C, above 250°C 3~6 Seconds
- 5. Ramp up rate during cooling: -10.0 °C/Sec (From 260°C to 150°C)

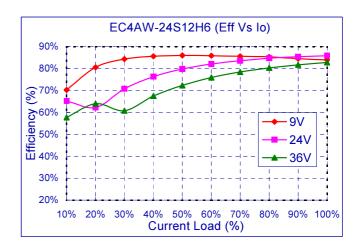

Figure 3 Recommended PCB Layout Footprints and Wave Soldering Profiles for DIP-24 packages

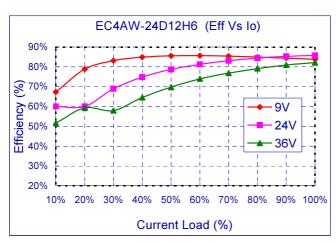
6.2 Power De-Rating Curves for EC4AW-H6 Series

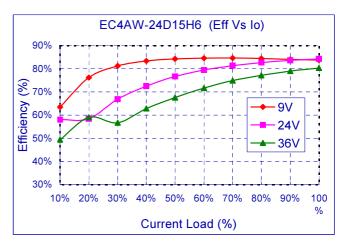
Operating Ambient temperature Range: -40°C ~71°C with de-rating above 71°C.

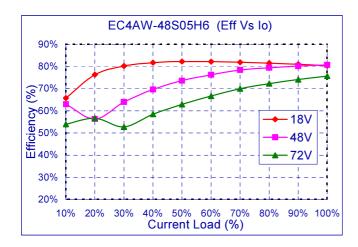
Maximum case temperature under any operating condition should not exceed 100° C.

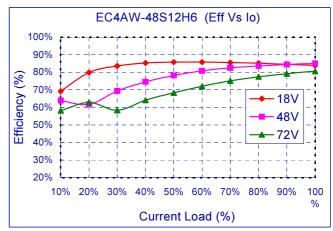

Typical Derating curve for Natural Convection

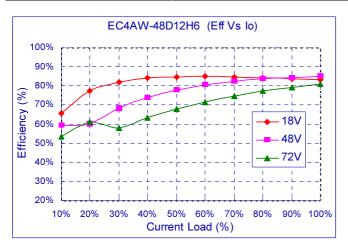


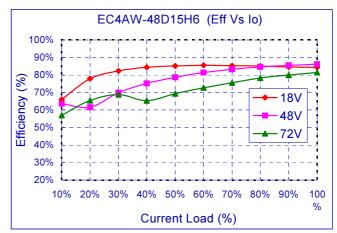


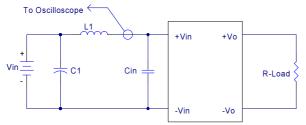

Application Note V10 September 2014


6.3 Efficiency vs. Load Curves









Application Note V10 September 2014

6.4 Input Capacitance at the Power Module

The converters must be connected to low AC source impedance. To avoid problems with loop stability source inductance should be low. Also, the input capacitors (Cin) should be placed close to the converter input pins to de-couple distribution inductance. However, the external input capacitors are chosen for suitable ripple handling capability. Low ESR capacitors are good choice. Circuit as shown in Figure 4 represents typical measurement methods for reflected ripple current. C1 and L1 simulate a typical DC source impedance. The input reflected-ripple current is measured by current probe to oscilloscope with a simulated source Inductance (L1).

L1: 12uH.

C1: 33uF, ESR < 0.7Ω @ 20° C, 100KHz.

Cin: None

Figure 4 Input Reflected-Ripple Test Setup

6.5 Test Set-Up

The basic test set-up to measure parameters such as efficiency and load regulation is shown in Figure 5. When testing the modules under any transient conditions please ensure that the transient response of the source is sufficient to power the equipment under test. We can calculate the

- Efficiency
- Load regulation and line regulation.

The value of efficiency is defined as:

$$\eta = \frac{Vo \times Io}{Vin \times Iin} \times 100\%$$

Where

Vo is output voltage,

lo is output current,

Vin is input voltage,

lin is input current.

The value of load regulation is defined as:

$$Load.reg = \frac{V_{FL} - V_{NL}}{V_{NI}} \times 100\%$$

Where

 V_{FL} is the output voltage at full load V_{NL} is the output voltage at 10% load

The value of line regulation is defined as:

$$Line.reg = \frac{V_{HL} - V_{LL}}{V_{LL}} \times 100\%$$

Where

V_{HL} is the output voltage of maximum input voltage at full load.

 V_{LL} is the output voltage of minimum input voltage at full load.

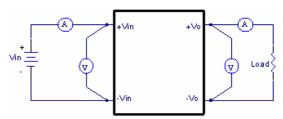
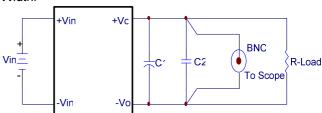



Figure 5 EC4AW-H6 Series Test Setup

6.6 Output Ripple and Noise Measurement

The test set-up for noise and ripple measurements is shown in Figure 6. A coaxial cable was used to prevent impedance mismatch reflections disturbing the noise readings at higher frequencies. Measurements are taken with output appropriately loaded and all ripple/noise specifications are from 5Hz to 20MHz Band Width.

Note: C1: None

C2: 0.1uF Ceramic capacitor

Figure 6 Output Voltage Ripple and Noise Measurement Set-Up

6.7 Output Capacitance

The EC4AW-H6 series converters provide unconditional stability with or without external capacitors. For good transient response low ESR output capacitors should be located close to the point of load. These series converters are designed to work with load capacitance to see technical specifications.

Application Note V10 September 2014

7. Safety & EMC

7.1 Input Fusing and Safety Considerations.

The EC4AW-H6 series converters have not an internal fuse. However, to achieve maximum safety and system protection, always use an input line fuse. We recommended a time delay fuse 1A for 24Vin models and 0.5A for 48Vin modules. Figure 7 circuit is recommended by a Transient Voltage Suppressor diode across the input terminal to protect the unit against surge or spike voltage and input reverse voltage.

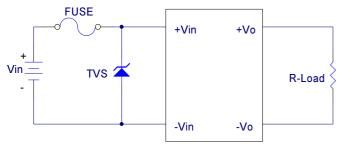


Figure 7 Input Protection

7.2 EMC Considerations

EMI Test standard: EN55022

Test Condition: Input Voltage: Nominal, Output Load: Full Load

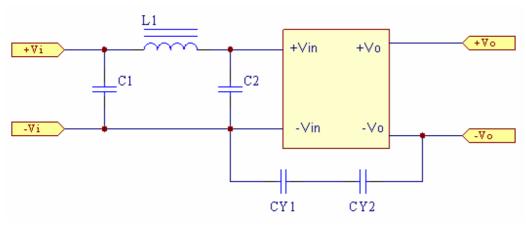
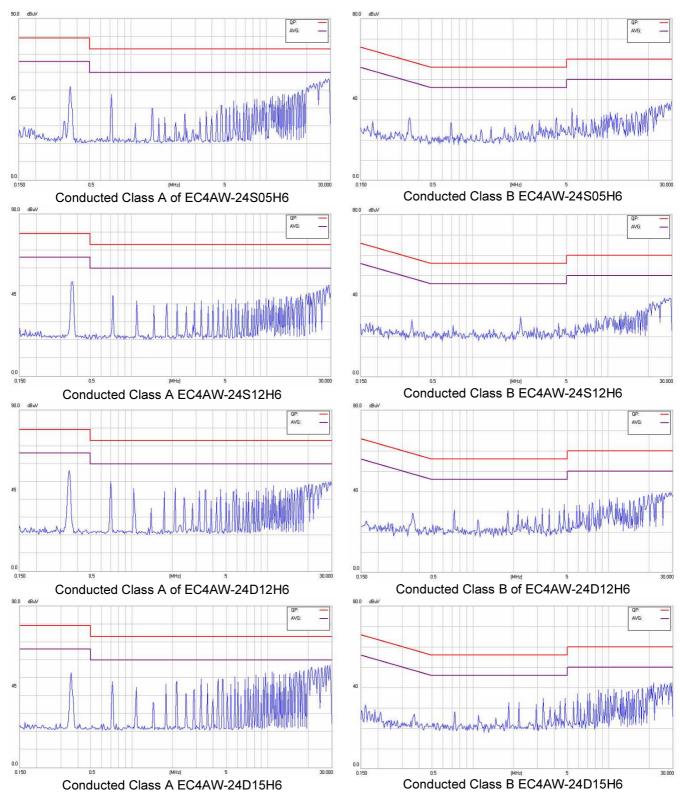
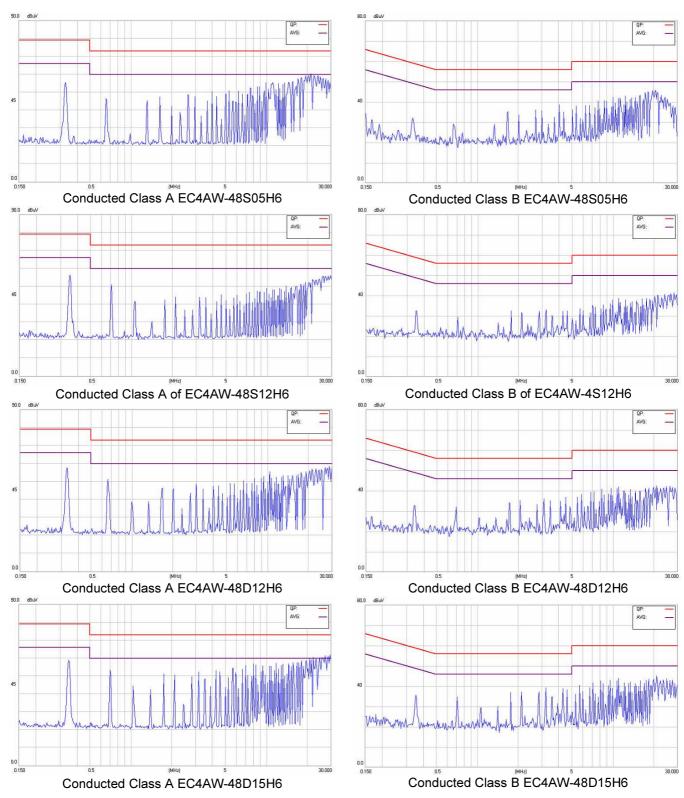


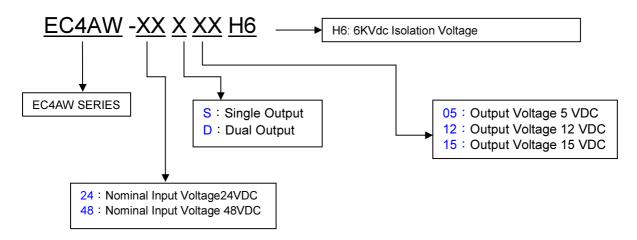
Figure 8 Connection circuit for conducted EMI testing



EC4AW-H6 5-6W Isolated DC-DC Converters Application Note V10 September 2014

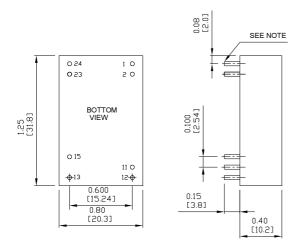

	EN55022 Class A					EN55022 Class B				
Model No.	C1	C2	CY1	CY2	L1	C1	C2	CY1	CY2	L1
EC4AW-24S05H6	NC	NC	NC	NC	Short	3.3uF/50V	NC	470pF/3KVAC	470pF/3KVAC	3.3uH
EC4AW-24S12H6	NC	NC	NC	NC	Short	3.3uF/50V	NC	470pF/3KVAC	470pF/3KVAC	3.3uH
EC4AW-24D12H6	NC	NC	NC	NC	Short	3.3uF/50V	NC	470pF/3KVAC	470pF/3KVAC	3.3uH
EC4AW-24D15H6	NC	NC	NC	NC	Short	3.3uF/50V	NC	470pF/3KVAC	470pF/3KVAC	3.3uH
EC4AW-48S05H6	NC	NC	NC	NC	Short	2.2uF/100V	NC	680pF/3KVAC	680pF/3KVAC	6.8uH
EC4AW-48S12H6	NC	NC	NC	NC	Short	2.2uF/100V	NC	680pF/3KVAC	680pF/3KVAC	6.8uH
EC4AW-48D12H6	NC	NC	NC	NC	Short	2.2uF/100V	NC	680pF/3KVAC	680pF/3KVAC	6.8uH
EC4AW-48D15H6	NC	NC	NC	NC	Short	2.2uF/100V	NC	680pF/3KVAC	680pF/3KVAC	6.8uH

Note: C1 are ceramic capacitors, CY1 and CY2 are Y1 capacitors



Application Note V10 September 2014

8. Part Number



9. Mechanical Specifications

NOTE:Pin Size is 0.02±0.002 Inch (0.5±0.05 mm)DIA

All Dimensions In Inches (mm)

Tolerances Inches: $X.XX = \pm 0.02$, $X.XXX = \pm 0.010$ Millimeters: $X.X = \pm 0.5$, $X.XX = \pm 0.25$

	PIN CONNECTION					
Pin	Single Output	Dual Output				
1	+V Input	+V Input				
2	+V Input	+V Input				
11	NP	Common				
12	-V Ouput	NP				
13	+V Output	-V Output				
15	NP	+V Output				
23	-V Input	-V Input				
24	-V Input	-V Input				
	•	•				

* NC-NO CONNECTION WITH PIN

* NP-NO PIN

CINCON ELECTRONICS CO., LTD.

Headquarter Office:

14F, No.306, Sec.4, Hsin Yi Rd.,

Taipei, Taiwan Tel: 886-2-27086210 Fax: 886-2-27029852

E-mail: sales@cincon.com.tw
Web Site: http://www.cincon.com

Factory:

No. 8-1, Fu Kong Rd., Fu Hsing Industrial Park Fu Hsing Hsiang, ChangHua Hsien, Taiwan

Tel: 886-4-7690261 Fax: 886-4-7698031

Cincon American Office:

1655 Mesa Verde Ave, Ste 180,

Ventura, CA 93003 Tel: 805-639-3350 Fax: 805-639-4101 E-mail: info@cincon.com