

Application Note V13 November 2020

ISOLATED DC-DC Converter EC8AW SERIES APPLICATION NOTE

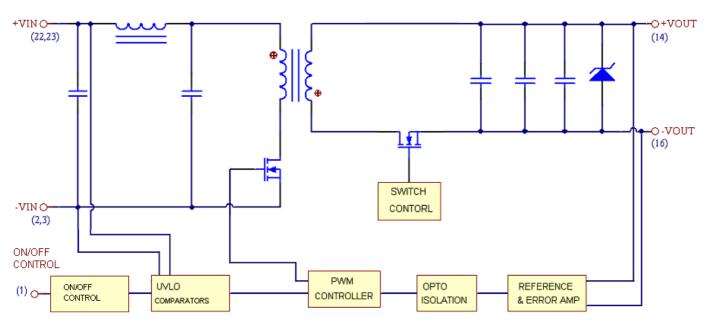
Approved By:

Department	Approved By	Checked By	Written By
Research and Development Department	Enoch	Astray Jacky	Joyce
Quality Assurance Department	Ryan	Benny	

Application Note V13 November 2020

Content

1. INTRODUCTION	3
2. DC-DC CONVERTER FEATURES	3
3. ELECTRICAL BLOCK DIAGRAM	3
4. TECHNICAL SPECIFICATIONS	5
5. MAIN FEATURES AND FUNCTIONS	9
5.1 Operating Temperature Range	9
5.2 Remote On/Off	9
5.3 UVLO (Under Voltage Lock Out)	9
5.4 Over Current Protection	9
5.5 Over Voltage Protection	9
6. APPLICATIONS	9
6.1 Recommended Layout PCB Footprints and Soldering Information	9
6.2 Power De-Rating Curves for EC8AW Series	10
6.3 Efficiency vs. Load Curves	11
6.4 Input Capacitance at the Power Module	13
6.5 Test Set-Up	13
6.6 Output Ripple and Noise Measurement	13
6.7 Output Capacitance	13
7. SAFETY & EMC	14
7.1 Input Fusing and Safety Considerations.	14
7.2 EMC Considerations	14
8. PART NUMBER	20
9. MECHANICAL SPECIFICATIONS	20

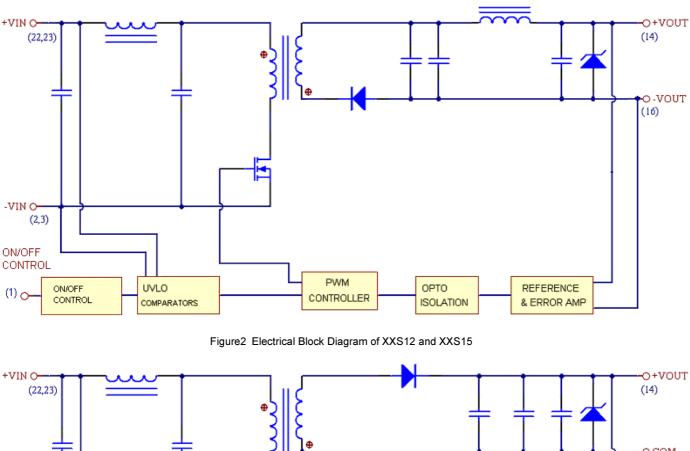

Application Note V13 November 2020

1. Introduction

The EC8AW series offer 15 watts of output power in a 24 pin DIP copper package. The EC8AW series has a 4:1 wide input voltage range of 9-36VDC, 18-75VDC and provides a precisely regulated output. This series has features such as high efficiency, 1500VDC of isolation and allows an ambient operating temperature range of -40° C to 85° C (de-rating above 65 °C). The modules are fully protected against input UVLO (under voltage lock out) output short circuit and output overvoltage conditions. All models are very suitable for distributed power architectures, telecommunications, battery operated equipment and industrial applications.

2. DC-DC Converter Features

- 15W Isolated Output
- DIP-24 Metal Package
- Very High Efficiency up to 90%
- Low No Load Power Consumption
- 4:1 Input Range
- Regulated Outputs
- Conductive EMI Meet EN55032 Class A Without External Components
- Continuous Short Circuit Protection
- No Tantalum Capacitor Inside
- Safety Meets IEC/EN/UL 62368-1



3. Electrical Block Diagram

Figure1 Electrical Block Diagram of XXS33 and XXS05

Application Note V13 November 2020

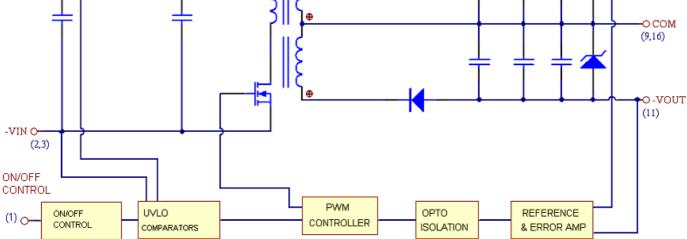


Figure3 Electrical Block Diagram of dual output module

4. Technical Specifications

(All specifications are typical at nominal input, full load at 25°C unless otherwise noted.)

ABSOLUTE MAXIMUM RATINGS

PARAMETER	NOTES and CONDITIONS	Device	Min.	Typical	Max.	Units
Input Voltage	- ·					-
Continuous		24Vin	-0.3		36	Vala
Continuous		48Vin	-0.3		75	Vdc
Transient	100ms	24Vin			50	Vdc
		48Vin			100	vac
Operating Ambient Temperature	Derating, Above 65°C	All	-40		+85	°C
Case Temperature		All			105	°C
Storage Temperature		All	-55		+125	°C
Input/Output Isolation Voltage	1 minute	All			1500	Vdc

INPUT CHARACTERISTICS

PARAMETER	NOTES and CONDITIONS	Device	Min.	Typical	Max.	Units
		24Vin	9	24	36	Vala
Operating Input Voltage		48Vin	18	48	75	Vdc
Maximum Input Current	100% Load, Vin=9V	24Vin			1900	mΛ
Maximum Input Current	100% Load, Vin=18V	48Vin			1000	mA
		24S33		8		
		24S05		8		
	Vin=24V	24S12		8		
		24S15		8		
		24D12		8		
No. Lood Input Current		24D15		8		
No-Load Input Current		48S33		6		mA
		48S05		6		
	$\lambda (n - 40) ($	48S12		6		
	Vin=48V	48S15		6		
		48D12		6		
		48D15		6		
Off Converter Input Current	Shutdown input idle current	All		2	4	mA
Inrush Current (I ² t)	As per ETS300 132-2	All			0.1	A ² s
Input Reflected-Ripple Current	P-P thru 12uH inductor, 5Hz to 20MHz	All			30	mA

OUTPUT CHARACTERISTIC

PARAMETER	NOTES and CONDITIONS	Device	Min.	Typical	Max.	Units
		Vo=3.3V	3.2505	3.3	3.3495	
		Vo=5V	4.925	5	5.075	
Output Voltage Set Beint		Vo=12V	11.82	12	12.18	Vdc
Output Voltage Set Point	Vin=Nominal Vin , lo=lo.max, Tc=25°C	Vo=15V	14.775	15	15.225	vac
		Vo=±12V	11.82	12	12.18	
		Vo=±15V	14.775	15	15.225	
Output Voltage Balance	Vin=nominal, Io=Io _{max} , Tc=25℃	Dual			±1.0	%

OUTPUT CHARACTERISTIC

PARAMETER	NOTES and CONDITIONS	Device	Min.	Typical	Max.	Units
Output Voltage Regulation	· · ·				•	
Load Regulation	lo= Full Load to min. Load	Single			±0.5	%
		Dual			±1.0	%
Line Regulation	Vin=High line to Low line Full Load	Single			±0.2	%
		Dual			±0.5	%
Cross Regulation	Load cross variation 10% / 100%	Dual			±5	%
Temperature Coefficient	TC=-40°C to 85°C	All			±0.03	%/°C
Output Voltage Ripple and Noise	5Hz to 20MHz bandwidth					
		Vo=3.3V				
		Vo=5V				
Peak-to-Peak	Full Load,20MHz bandwidth, Measure with 0.1uF Ceramic	Vo=12V			75	mV
Feak-lo-Feak	capacitor	Vo=15V			75	111V
		Vo=±12V				
		Vo=±15V				
		Vo=3.3V	0		4000	
		Vo=5V	0		3000	
Operating Output Current Range		Vo=12V	0		1250	mA
		Vo=15V	0		1000	ШA
		Vo=±12V	0		±625	
		Vo=±15V	0		±500	
Output DC Current-Limit Inception	Output Voltage=90% V _{O, nominal}	All	110	135	160	%
		Vo=3.3V			4000	
		Vo=5V			3000	
Maximum Quatrant Qana aita	Full land. Desistance	Vo=12V			1250	
Maximum Output Capacitance	Full load, Resistance	Vo=15V			1000	uF
					625	
		Vo=±15V			500	

DYNAMIC CHARACTERISTICS

PARAMETER	NOTES and CONDITIONS	Device	Min.	Typical	Max.	Units
Output Voltage Current Transient			•			
Step Change in Output Current	75% to 100% of lo.max	All			±5	%
Setting Time (within 1% Vonominal)	di/dt=0.1A/us	All			250	us
Turn-On Delay and Rise Time						
Turn-On Delay Time, From On/Off Control	Von/off to 10%Vo, set	All		7.5		ms
Turn-On Delay Time, From Input	Vin,min. to 10%Vo, set	All		7.5		ms
Output Voltage Rise Time	10%Vo, set to 90%Vo, set	All		7.5		ms

EFFICIENCY

PARAMETER	NOTES and CONDITIONS	Device	Min.	Typical	Max.	Units
		24S33		88		
		24S05		90		
	Vin=12V, Io=Io _{max} , Tc=25 $^{\circ}$ C	24S12		90		
		24S15		90		
		24D12		89		
100% Load		24D15		90		%
		48S33		89		/0
		48S05		90		
	Vin=24V, Io=Io _{max} , Tc=25℃	48S12		90		
	$V_{11} = 24V, 10 = 10max, 10 = 23C$	48S15		90		
		48D12		89.5		
		48D15		90		
		24S33		88		
		24S05		90		
	Vin=24V, Io=Io _{max} , Tc=25℃	24S12		90		
		24S15		90		
		24D12		89		
100% Load		24D15		90		%
		48S33		89		70
		48S05		90		
	Vin=48V, Io=Io _{max} , Tc=25℃	48S12		90		
	$\sqrt{11-40}$ v, $10-10$ max, $10-20$ C	48S15		90		
		48D12		89.5		
		48D15		90		

ISOLATION CHARACTERISTICS

PARAMETER	NOTES and CONDITIONS	Device	Min.	Typical	Max.	Units
Input to Output	1 minutes	All			1500	Vdc
Isolation Resistance		All	1000			MΩ
Isolation Capacitance		All		1000		pF
FEATURE CHARACTERIST	ICS					
PARAMETER	NOTES and CONDITIONS	Device	Min.	Typical	Max.	Units
Switching Frequency		All		300		KHz
On/Off Control, Positive Remote Or	/Off logic					
Logic Low (Module Off)	Von/off at Ion/off=1.0mA	All	0		1.2	V
Logic High (Module On)	Von/off at lon/off=0.1uA	All	3.5 or Open Circuit		75	V
On/Off Current (for both remote on/off logic)	Ion/off at Von/off=0.0V	All		0.3	1	mA
Leakage Current (for both remote on/off logic)	Logic High, Von/off=15V	All			30	uA
Off Converter Input Current	Shutdown input idle current	All		2	4	mA
Output Voltage Trim Range	Pout=max rated power	Single	-10		+10	%

FEATURE CHARACTERISTICS

PARAMETER	NOTES and CONDITIONS	Device	Min.	Typical	Max.	Units
		Vo=3.3V		3.9		
Output Over Voltage Protection		Vo=5.0V		6.2		
	Zener or TVS Clamp	Vo=12V		15		Vdc
		Vo=15V		18		vuc
		Vo=±12V		±15		
		Vo=±15V		±18		
GENERAL SPECIFICATION	IS					
PARAMETER	NOTES and CONDITIONS	Device	Min.	Typical	Max.	Units
MIDE	lo=100%of lo max.; Ta=25℃ per	Vo=3.3&5V		960		К
MTBF	MIL-HDBK-217F	Others		1250		hours
Weight		All		18		grams

5. Main Features and Functions

5.1 Operating Temperature Range

The EC8AW series converters can be operated by a wide ambient temperature range from -40°C to 85° C (de-rating above 65° C). The standard model has a Copper case and case temperature can not over 105° C at normal operating.

5.2 Remote On/Off

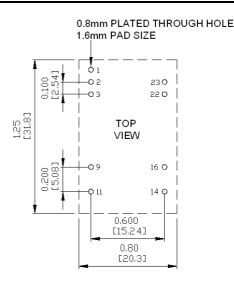
The EC8AW series allows the user to switch the module on and off electronically with the remote on/off feature. All models are available in "positive logic" versions. The converter turns on if the remote on/off pin is high (>3.5Vdc or open circuit). Setting the pin low (0 to <1.2Vdc) will turn the converter off. The signal level of the remote on/off input is defined with respect to ground. If not using the remote on/off pin, leave the pin open (converter will be on).

5.3 UVLO (Under Voltage Lock Out)

Input under voltage lockout is standard on the EC8AW unit. The unit will shut down when the input voltage drops below a threshold, and the unit will operate when the input voltage goes above the upper threshold.

5.4 Over Current Protection

All models have internal over current and continuous short circuit protection. The unit operates normally once the fault condition is removed. At the point of current limit inception, the converter will go into hiccup mode protection.


5.5 Over Voltage Protection

The over-voltage protection consists of a zener diode to limiting the out voltage.

6. Applications

6.1 Recommended Layout PCB Footprints and Soldering Information

The system designer or the end user must ensure that other components and metal in the vicinity of the converter meet the spacing requirements to which the system is approved. Low resistance and low inductance PCB layout traces are the norm and should be used where possible. Due consideration must also be given to proper low impedance tracks between power module, input and output grounds. The recommended footprints and soldering profiles are shown as Figure4.

Note: Dimensions are in inches (millimeters)

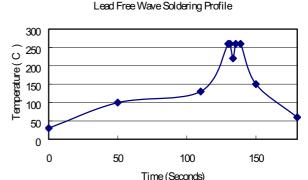
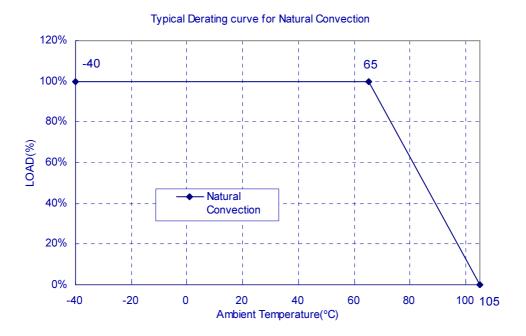
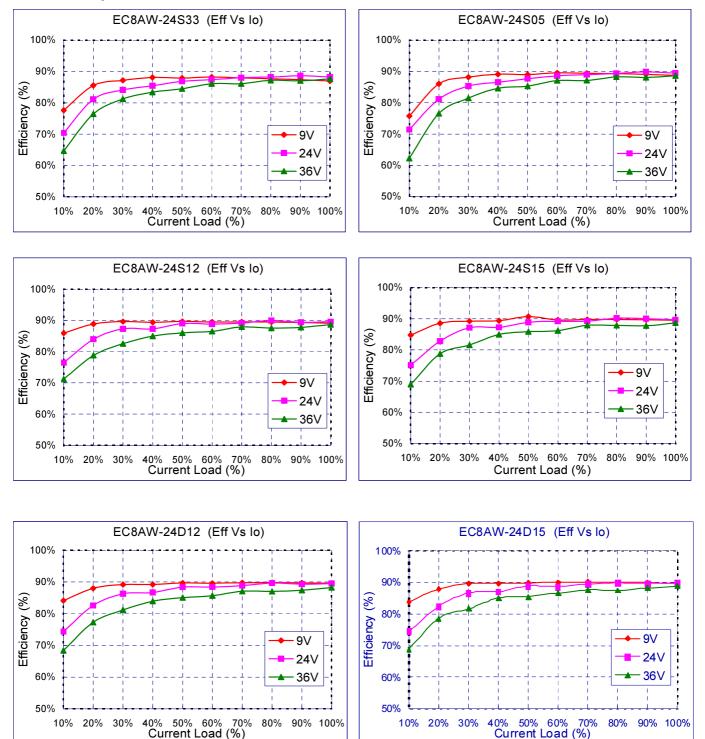


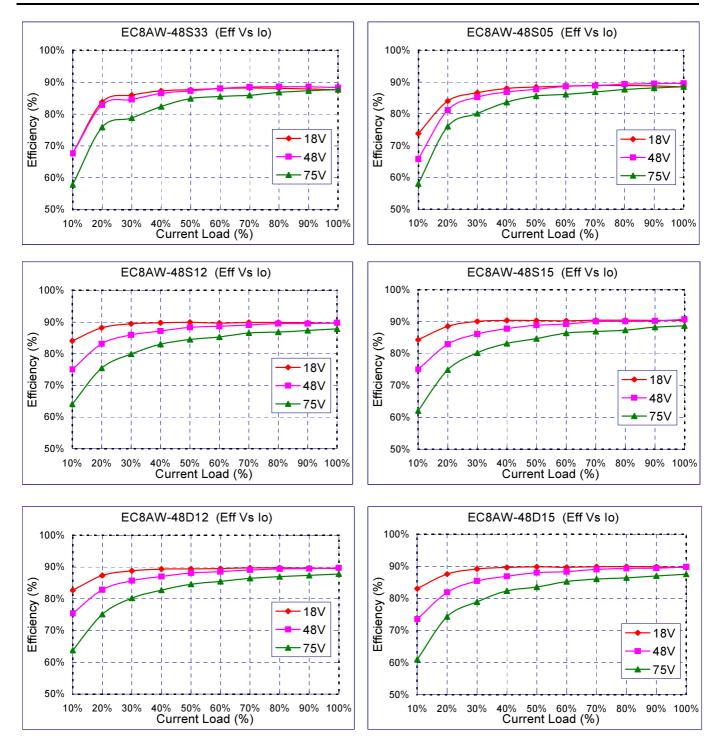
Figure4 Recommended PCB Layout Footprints and Wave Soldering Profiles


Note :

- 1. Soldering Materials: Sn/Cu/Ni
- 2. Ramp up rate during preheat: 1.4 ℃/Sec (From 50℃ to 100℃)
- 3. Soaking temperature: 0.5 ℃/Sec (From 100℃ to 130℃), 60±20 seconds
- 4. Peak temperature: 260°C , above 250°C 3~6 Seconds
- 5. Ramp up rate during cooling: -10.0 $^\circ \!\! \mathbb{C}$ /Sec (From 260 $^\circ \!\! \mathbb{C}$ to 150 $^\circ \!\! \mathbb{C}$)

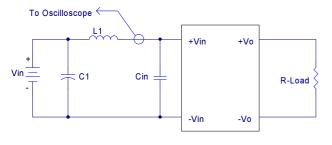
6.2 Power De-Rating Curves for EC8AW Series


Operating Ambient temperature Range: -40 $^{\circ}$ C ~ 85 $^{\circ}$ C (derating above 65 $^{\circ}$ C). Maximum case temperature under any operating condition should not exceed 105 $^{\circ}$ C.



Application Note V13 November 2020

6.3 Efficiency vs. Load Curves



Application Note V13 November 2020

6.4 Input Capacitance at the Power Module

The converters must be connected to low AC source impedance. To avoid problems with loop stability source inductance should be low. Also, the input capacitors (Cin) should be placed close to the converter input pins to de-couple distribution inductance. However, the external input capacitors are chosen for suitable ripple handling capability. Low ESR capacitors are good choice. Circuit as shown in Figure5 represents typical measurement methods for reflected ripple current. C1 and L1 simulate a typical DC source impedance. The input reflected-ripple current is measured by current probe to oscilloscope with a simulated.

source Inductance (L1).

L1: 1uH C1: None Cin: 22uF ESR<0.7ohm @100KHz

Figure5 Input Reflected-Ripple Test Setup

6.5 Test Set-Up

The basic test set-up to measure parameters such as efficiency and load regulation is shown in Figure6. When testing the modules under any transient conditions please ensure that the transient response of the source is sufficient to power the equipment under test. We can calculate the

- Efficiency
- Load regulation and line regulation.

The value of efficiency is defined as:

$$\eta = \frac{V_O \times I_O}{V_{IN} \times I_{IN}} \times 100\%$$

Where

Vo is output voltage, lo is output current, VIN is input voltage, liN is input current.

The value of load regulation is defined as:

$$Load.reg = \frac{V_{FL} - V_{NL}}{V_{NL}} \times 100\%$$

Where

 V_{FL} is the output voltage at full load V_{NL} is the output voltage at 10% load

The value of line regulation is defined as:

$$Line.reg = \frac{V_{HL} - V_{LL}}{V_{LL}} \times 100\%$$

Where

 V_{HL} is the output voltage of maximum input voltage at full load.

 V_{LL} is the output voltage of minimum input voltage at full load.

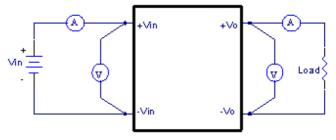
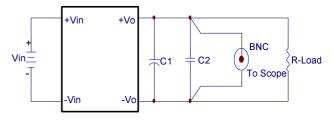



Figure6 EC8AW Series Test Setup

6.6 Output Ripple and Noise Measurement

The test set-up for noise and ripple measurements is shown in Figure9. A coaxial cable was used to prevent impedance mismatch reflections disturbing the noise readings at higher frequencies. Measurements are taken with output appropriately loaded and all ripple/noise specifications are from D.C. to 20MHz Band Width.

Note: C1: None

C2: 0.1uF Ceramic capacitor

Figure9 Output Voltage Ripple and Noise Measurement Set-Up

6.7 Output Capacitance

The EC8AW series converters provide unconditional stability with or without external capacitors. For good transient response low ESR output capacitors should be located close to the point of load. These series converters are designed to work with load capacitance to see technical specifications.

7. Safety & EMC

7.1 Input Fusing and Safety Considerations.

The EC8AW series converters have not an internal fuse. However, to achieve maximum safety and system protection, always use an input line fuse. We recommended a fast acting fuse 3.15A for 24Vin models and 1.6A for 48Vin models. Figure 10 circuit is recommended by a Transient Voltage Suppressor diode across the input terminal to protect the unit against surge or spike voltage and input reverse voltage.

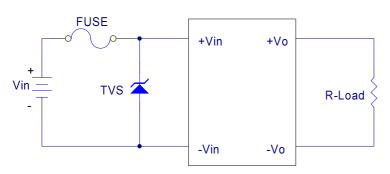
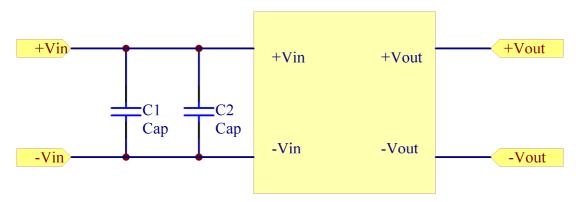
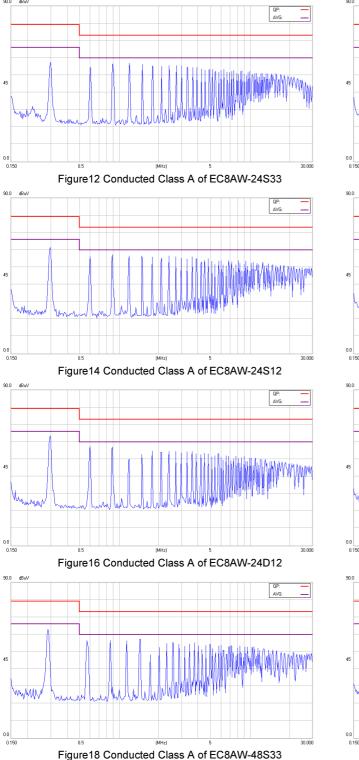
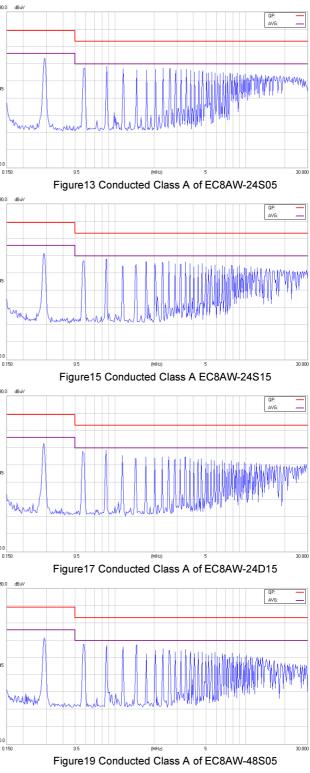



Figure10 Input Protection

7.2 EMC Considerations

(1) EMI Test standard: EN55032 Class A Conducted Emission Test Condition: Input Voltage: Nominal, Output Load: Full Load




Figur11 Connection circuit for conducted EMI testing

EN55032 class A								
Model No.	C1	C2	Model No.	C1	C2			
EC8AW-24S33	None	None	EC8AW -48S33	None	None			
EC8AW -24S05	None	None	EC8AW -48S05	None	None			
EC8AW -24S12	None	None	EC8AW -48S12	None	None			
EC8AW -24S15	None	None	EC8AW -48S15	None	None			
EC8AW -24D12	None	None	EC8AW -48D12	None	None			
EC8AW -24D15	None	None	EC8AW -48D15	None	None			

Note: All of capacitors are ceramic capacitors and 1812 size.

Application Note V13 November 2020

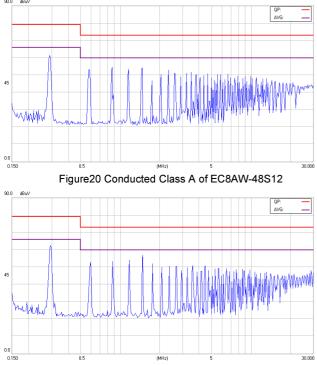


Figure22 Conducted Class A of EC8AW-48D12

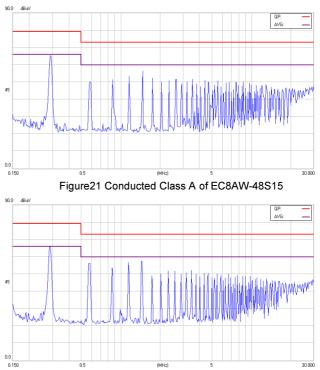
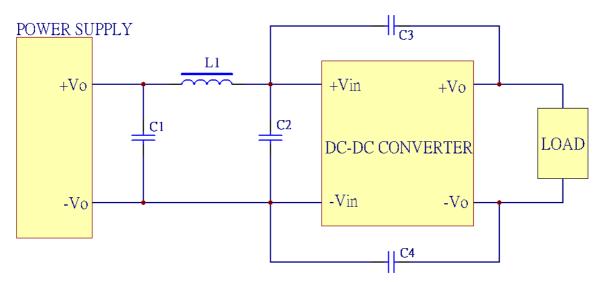
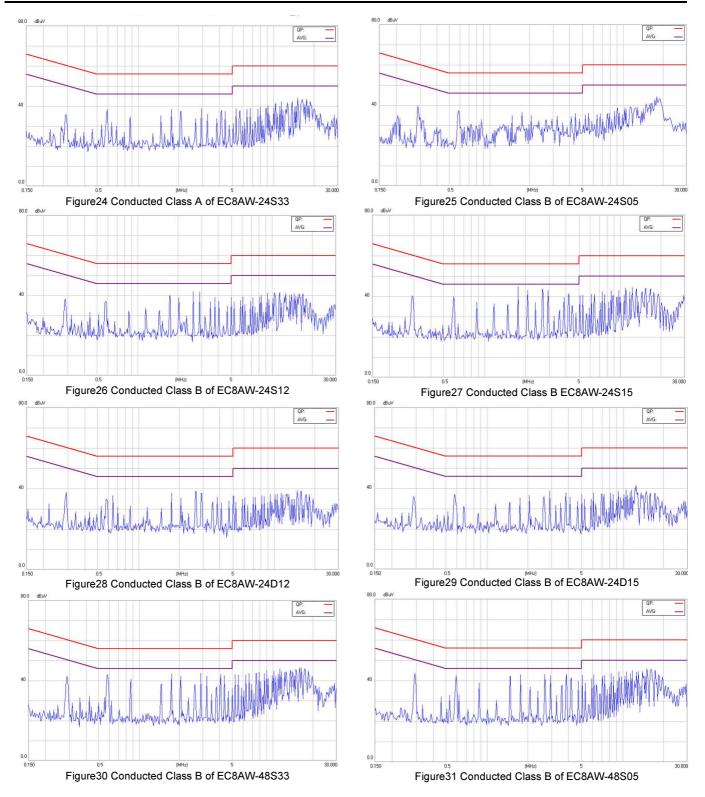
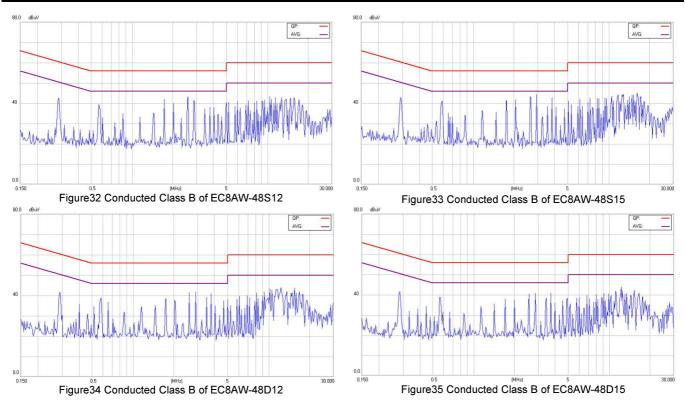
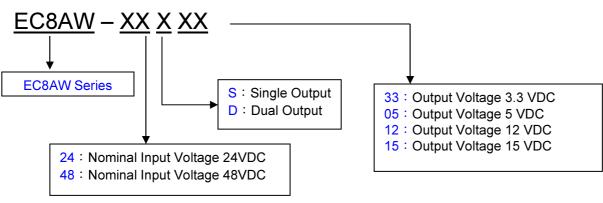



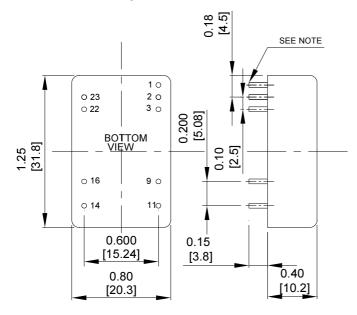
Figure23 Conducted Class A of EC8AW-48D15


(2) EMI Test standard: EN55032 Class B Conducted Emission Test Condition: Input Voltage: Nominal, Output Load: Full Load


EN55032 class B								
Model No.	C1	C2	C3	C4	L1			
EC8AW-24S33	6.8uF/50V	6.8uF/50V	1000pF/2KV	1000pF/2KV	3.3uH			
EC8AW -24S05	6.8uF/50V	6.8uF/50V	1000pF/2KV	1000pF/2KV	3.3uH			
EC8AW -24S12	6.8uF/50V	6.8uF/50V	1000pF/2KV	1000pF/2KV	3.3uH			
EC8AW -24S15	6.8uF/50V	6.8uF/50V	1000pF/2KV	1000pF/2KV	3.3uH			
EC8AW -24D12	6.8uF/50V	6.8uF/50V	1000pF/2KV	1000pF/2KV	3.3uH			
EC8AW -24D15	6.8uF/50V	6.8uF/50V	1000pF/2KV	1000pF/2KV	3.3uH			
EC8AW -48S33	2.2uF/100V	2.2uF/100V	1500pF/2KV	1500pF/2KV	3.3uH			
EC8AW -48S05	2.2uF/100V	2.2uF/100V	1500pF/2KV	1500pF/2KV	3.3uH			
EC8AW -48S12	2.2uF/100V	2.2uF/100V	1500pF/2KV	1500pF/2KV	3.3uH			
EC8AW -48S15	2.2uF/100V	2.2uF/100V	1500pF/2KV	1500pF/2KV	3.3uH			
EC8AW -48D12	2.2uF/100V	2.2uF/100V	1500pF/2KV	1500pF/2KV	3.3uH			
EC8AW -48D15	2.2uF/100V	2.2uF/100V	1500pF/2KV	1500pF/2KV	3.3uH			

Note: C1, C2 are ceramic capacitors 1812 size and C3, C4 are ceramic capacitors 1206 size





Application Note V13 November 2020

8. Part Number

9. Mechanical Specifications

NOTE:Pin Size is 0.02 ± 0.002 lnch $(0.5\pm0.05 \text{ mm})$ DIA All Dimensions In Inches (mm) Tolerances Inches: X.XX= ±0.02 , X.XXX= ±0.010 Millimeters: X.X= ±0.5 , X.XX= ±0.25

PIN CONNECTION		
Pin	Single Output	Dual Output
1	Remote on/off	Remote on/off
2,3	-V Input	-V Input
4,5	NP	NP
9	NP	Common
10	NP	NP
11	NC	-V Output
12	NP	NP
13	NP	NP
14	+V Output	+V Output
15	NP	NP
16	-V Output	Common
20,21,24	NP	NP
22,23	+V Input	+V Input

* NC-NO CONNECTION WITH PIN * NP-NO PIN

Headquarter Office:

14F, No.306, Sec.4, Hsin Yi Rd., Taipei, Taiwan Tel: 886-2-27086210 Fax: 886-2-27029852 E-mail: <u>sales@cincon.com.tw</u> Web Site: http://www.cincon.com

CINCON ELECTRONICS CO., LTD. Factory: Cinco

No. 8-1, Fu Kong Rd., Fu Hsing Industrial Park Fu Hsing Hsiang, ChangHua Hsien, Taiwan Tel: 886-4-7690261 Fax: 886-4-7698031

Cincon American Office:

1655 Mesa Verde Ave, Ste 180, Ventura, CA 93003 Tel: 805-639-3350 Fax: 805-639-4101 E-mail: info@cincon.com