

Application Note V11

LED Power Supply LDL40 Series Application Note

Approved By:

Department	Approved By	Checked By	Written By
Research and Development Department	Ovid	Yang/Pei Chun	Joyce
Design Quality Department	Benny	olol	

Application Note V11

<u>Content</u>

1. INTRODUCTION	3
2. LDL40 SERIES LED DRIVER FEATURES	3
3. GENERAL DESCRIPTION	3
4. TECHNICAL SPECIFICATIONS	4
5. MAIN FEATURES AND FUNCTIONS	7
5.1 Operating Temperature Range	7
5.2 Short Protection	7
5.3 Over Voltage Protection	7
5.4 DIGITAL Dimming Operation	7
5.5 Temperature Compensation Operation	7
6. SAFETY	7
7. APPLICATIONS	7
7.1 Power De-rating Curves	7
7.2 Efficiency vs. Output Power	8
7.3 Test Set-Up	9
7.4 Output Ripple and Noise Measurement	9
8. MECHANICAL OUTLINE DIAGRAMS	10
8.1 LDL40 Mechanical Outline Diagrams	10
9. INSTALLATION INSTRUCTION	11
9.1 The Maximum Number of Circuit Breakers	11
9.2 DIGITAL Dimming Function (Optional); Needs The from Dimming Controller	11
10. ORDER INFORMATION	12

Application Note V11

1. Introduction

This application note describes the features and functions of Cincon's LDL40 series of LED Driver, Isolated AC-DC power supply. These are highly efficient, reliable and compact power supply with high power density. The drivers are fully protected against short circuit and over-voltage conditions. Cincon's world class automated manufacturing methods, together with an extensive testing and qualification program; ensure that all LDL40 series converters are extremely reliable.

2. LDL40 Series LED Driver Features

- Universal Input: 90 ~ 264Vac
- Low AC Inrush Current < 5A
- Standby Power Consumption<0.5W
- PF>0.9
- Digital Dimming, 1~100%
- Adjustable Output Current Setting
- Continuous Short Circuit Protection
- Up to 2.5Φ Diameter Wire for Terminals of CN1(L/N)
- Up to 1.5Φ Diameter Wire for Other Terminals

3. General Description

A block diagram of the LDL40 series led driver is shown in Figure 1. The LDL40 series topology is based on an isolated one stage flyback converter. The control loop is optimized for unconditional stability, a very tight line and load regulation.

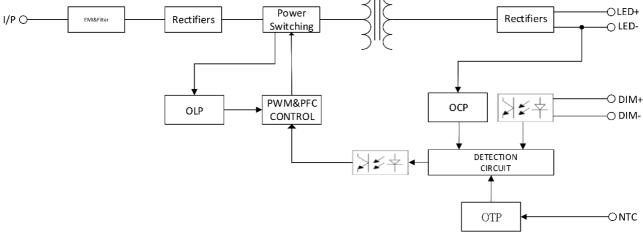


Figure 1. Electrical Block Diagram

Application Note V11

4. Technical Specifications

(All specifications are typical at nominal input, full load at 25°C unless otherwise noted.)

ABSOLUTE MAXIMUM RATINGS

PARAMETER	NOTES and CONDITIONS	Device	Min.	Typical	Max.	Units
Input Voltage		All	90		264	Vac
Operating Temperature	See Derating Curve	All	-30		+60	°C
Storage Temperature		All	-40		+85	°C

INPUT CHARACTERISTICS

PARAMETER	NOTES and CONDITIONS	Device	Min.	Typical	Max.	Units
Operating Voltage Range		All	100		240	Vac
Input Frequency Range		All	47		63	Hz
Meximum Input Current	100% Output current @115Vac	All			0.6	A
Maximum Input Current	100% Output current @230Vac	All			0.25	
Power factor correction	115Vac/230Vac at 100% Load		0.9			
Leakage Current	Maximum Input voltage is 264 Vac	All			0.75	mA
Inrush Current	@Vin=240Vac,	All			5	Α

OUTPUT CHARACTERISTIC

PARAMETER	NOTES and CONDITIONS	Device	Min.	Typical	Max.	Units		
		LDL40(3.3KΩ)			40			
	Vin=Nominal,No Load Tc=25°C	LDL40(10KΩ)			49	- V _{dc}		
No Load Output Voltage		LDL40(22KΩ)			55			
No Load Output Voltage		LDL40(39KΩ)			60	Vdc		
		LDL40(68KΩ)			60			
		LDL40(OPEN)			60			
		LDL40(3.3KΩ)		1400				
		LDL40(10KΩ)		1050				
Output Current		LDL40(22KΩ)		900		m۸		
Output Current		LDL40(39KΩ)		700		mA		
		LDL40(68KΩ)		600				
		LDL40(OPEN)		350				
Output Constant Current Accuracy		All	-5		+5	%		
		LDL40(3.3KΩ)	15		29			
		LDL40(10KΩ)	20		38			
Output Constant Region		LDL40(22KΩ)	20		44			
Output Constant Region		LDL40(39KΩ)	20		50	V _{dc}		
		LDL40(68KΩ)	20		50			
		LDL40(OPEN)	20		50			

Application Note V11

PARAMETER	NOTES and CONDITIONS	Device	Min.	Typical	Max.	Units	
Load Regulation	Measured minimum to maximum of the constant current region	-5		+5	%		
Line Regulation	Measured from high line to low line with full load	All	-5		+5	%	
Output Voltage Ripple and Noise Peak-to-Peak	20MHz Bandwidth, full load, 0.1uF ceramic and 10uF aluminum capacitor with 100% output current	All			600	mV	
No Load Consumption		All			0.5	W	
EFFICIENCY							
PARAMETER	NOTES and CONDITIONS	Device	Min.	Typical	Max.	Units	
Vin=230Vac Vout=29V, lout=1.4A, 100% Load All 8						%	
ISOLATION CHARACT	ERISTICS						
PARAMETER	NOTES and CONDITIONS	Device	Min.	Typical	Max.	Units	
Input to Output	1 minute						
Isolation Resistance				MΩ			
FEATURE CHARACTE	RISTICS						
PARAMETER	Typical	Max.	Units				
Switching Frequency						kHz	
GENERAL SPECIFICA	TIONS					1	
PARAMETER	NOTES and CONDITIONS	Device	Min.	Typical	Max.	Units	
Life Time	Vin=115Vac, Vout=29V, Io=1.4A 100% Load Ambient temperature is 40°C	All		40		k hours	
MTBF	Vin=115Vac, Vout=29V, Io=1.4A 100% Load Ambient temperature is 25℃ per MIL- HDBK-217F	All		264		k hours	
Weight		All		220		g	
Dimension	150.0x80.0x23.2mm ((W*L*H)						
Safety	IEC61347-1:2015, IEC61347-2-13:2 EN61347-1:2015, EN61347-2-13:20				20116		
Digital Dimming Standards	Meets IEC62386 part 101.102, 207	Ver.2					
EMC Emission	EN55015:2013+A1:2015, EN61000	-3-2:2014, EN6	1000-3-	3:2013			
Conducted Emissions	EN55015						
Radiated Emissions	EN55015		Class				
Harmonic Current Emissions	IEC 61000-3-2:2014 Class C						
EMC Immunity	EN61547:2009, IEC 61000-4-2,3,4,	5,6,8,11		<u>. </u>			
Electrostatic Discharge (ESD)	tic Discharge (ESD) IEC 61000-4-2 Air ±8kV, Contact ±4kV Cri						
Radio-Frequency, Electromagnetic Field	IEC 61000-4-3 80-1000 MHz, 3V/m				Criteri	аA	

Application Note V11

GENERAL SPECIFICATIONS

Electrical East Transients (EET)	IEC 61000-4-4 ±1.0kV AC Power, ±0.5kV Signal and Control Ports	Criteria A
Surge	IEC 61000-4-5 Line to Line ±2.0kV	Criteria A
Power-Frequency Continuous Conducted	IEC 61000-4-6 0.15-80 MHz, 3V	Criteria A
Power-Frequency Magnetic Field	IEC 61000-4-8 3 A/m	Criteria A
Voltage Dips and Interruptions	IEC 61000-4-11 30% Reduction, 100% Reduction	Criteria B

Application Note V11

5. Main Features and Functions

5.1 Operating Temperature Range

The LDL40 series led driver highly efficient converter design has resulted in its ability to operate ambient temperature environment $-30^{\circ}C \sim 60^{\circ}C$ (see derating curve). Due consideration must be given to the derating curves when ascertaining maximum power that can be drawn from the converter. The maximum power drawn is influenced by a number of factors, such as:

- Input voltage range.
- Permissible output load (per derating curve)

5.2 Short Protection

All different voltage models have a full continuous shortcircuit protection. The unit will auto recover once the short circuit is removed. To provide protection in a fault condition, the unit is equipped with internal over-current protection. The unit operates normally once the fault condition is removed. In the event of an over current converter will go into a hiccup mode protection.

5.3 Over Voltage Protection

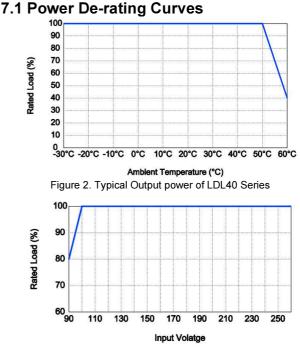
All different voltage models have over voltage protection. In the event of an over voltage converter will be clamped by a TVS component.

5.4 DIGITAL Dimming Operation

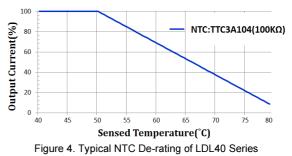
Please refer to section 9.

5.5 Temperature Compensation Operation

Between the NTC terminal, by connecting a temperature sensor (NTC resistor), Output current could be correspondingly changed, based on the sensed temperature. LDL40 can still be operated normally when the NTC resistor is not connected and the value of output current will be the current level selected


NTC resistance	Output Current		
	< 50°C, 100% of the rated current		
100K	$> 50^\circ$ C , output current begins to reduce,		
	please refer to the Figure 4. NTC De-rating		

- CINCON does not offer the NTC resistor and all the data above are measured by using THINKING TTC03 series.
- If other brands of NTC resistor are applied, please check the temperature curve first.


6. Safety

- •IEC62386-101, 102,207
- IEC61347-1:2015, IEC61347-2-13:2014
- ●IEC61347-2-13:2014/AMD:2016
- EN61347-1:2015, EN61347-2-13:2014;A1
- EN62384:2006;A1
- EN55015:2013+A1:2015
- EN61000-3-2:2014, EN61000-3-3:2013
- EN61547:2009
- IEC61000-4-2, 3, 4, 5, 6, 8, 11

7. Applications

91.00% 88.00%

85.00%

82.00% 79.00%

76.00%

Efficiency(%)

LDL40 Series

Application Note V11

7.2 Efficiency vs. Output Power

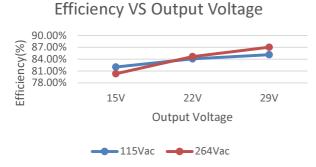
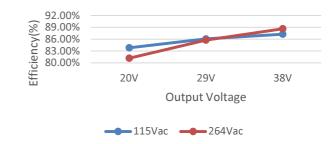



Figure 5. Efficiency vs. Output Power of LDL40 (to Output Current =1400mA)

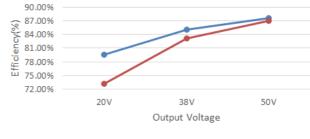
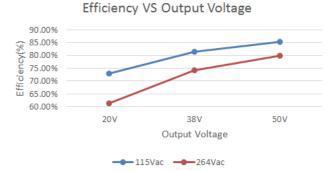
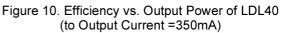
Efficiency VS Output Voltage

33V

20V

Figure 6. Efficiency vs. Output Power of LDL40 (to Output Current =1050mA)

Efficiency VS Output Voltage

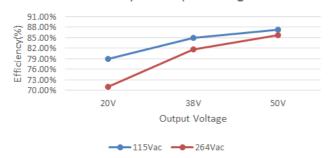
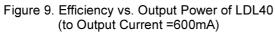
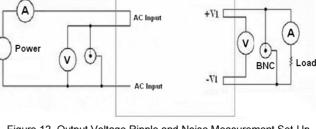


Figure 8. Efficiency vs. Output Power of LDL40 (to Output Current =700mA)



Efficiency VS Output Voltage

Efficiency VS Output Voltage



Application Note V11

7.3 Test Set-Up

The basic test set-up to measure parameters such as efficiency and load regulation is shown in Figure 11. When testing the Cincon's LDL series under any transient conditions please ensure that the transient response of the source is sufficient to power the equipment under test. We can calculate the

- Efficiency
- Load regulation and line regulation

The value of efficiency is defined as:

$$\eta = \frac{V_o \times I_o}{P_{in}} \times 100\%$$

Where: Vo is output voltage, lo is output current, Pin is input power,

The value of load regulation is defined as:

$$Load.reg = \frac{I_{max} - I_{min}}{I_{min}} \times 100\%$$

Where: Imax is the output current at maximum rated output voltage

> Imin is the output current at minimum rated output voltage

The value of line regulation is defined as:

$$Line.reg = \frac{I_{HL} - I_{LL}}{I_{LL}} \times 100\%$$

Where: IHL is the output current of maximum input voltage at full load.

> I_{LL} is the output current of minimum input voltage at full load.

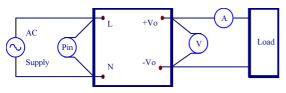


Figure 11. LDL40 Series Test Setup

7.4 Output Ripple and Noise Measurement

The test set-up for noise and ripple measurements is shown in Figure 12. Measured method:

Figure 12. Output Voltage Ripple and Noise Measurement Set-Up

Application Note V11

8. Mechanical Outline Diagrams

8.1 LDL40 Mechanical Outline Diagrams

All Dimensions in Inches[mm] Tolerance Inches:x.xxx±0.02 Millimeters:x.xx±0.5

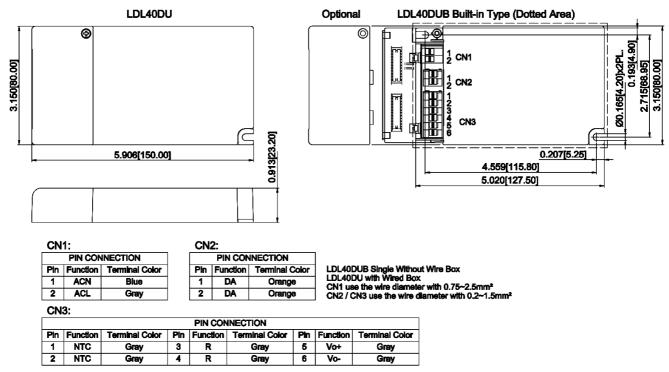


Figure 13 LDL40 Mechanical Outline Diagrams

Application Note V11

9. Installation Instruction

9.1 The Maximum Number of Circuit Breakers

LDL40 Series calculated values are based on MCB S200 Series manufactures by ABB

	Annli	catior	n Area	Series	Current	C10	C13	C16	C20	B10	R13	B16	B20	Inrush	Current
	/ uppin	oatioi	i / lica	ocnes	ouncil	010	010	010	020	DIO	0.0		020	Imax	time
		230Va	ic	LDL40	0.25	24	31	38	48	20	26	32	40	5A	<100us
	Туре	=	break currer	er rated nt	ated *60% (Safe margin)										
	C		AC in	put curre	nt labeled										
	Туре	=	break currer	er rated nt	*50%	(Safe	marg	in)							
B AC input current labeled															

9.2 DIGITAL Dimming Function (Optional); Needs The from Dimming Controller

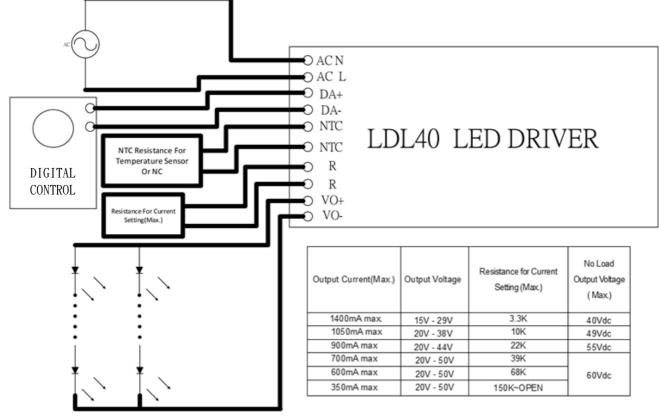


Figure 14 DIGITAL Dimming Function

Application Note V11

10. Order Information

Series	Model	Dimming Function	AC Input Range	Туре
LDL	40	Х	Х	Х
LDL	40	D: DIGITAL + Current setting	U:90~264Vac	Blank: Standard type B: Built-in type

Headquarters:

14F, No.306, Sec.4, Hsin Yi Rd. Taipei, Taiwan Tel: 886-2-27086210 Fax: 886-2-27029852 E-mail: <u>support@cincon.com.tw</u> Web Site: <u>http://www.cincon.com</u>

CINCON ELECTRONICS CO., LTD. Factory: Ci

No. 8-1, Fu Kung Rd. Fu Hsing Industrial Park Fu Hsing Hsiang, Chang Hua Hsien, Taiwan Tel: 886-4-7690261 Fax: 886-4-7698031

Cincon North America:

1655 Mesa Verde Ave. Ste 180 Ventura, CA 93003 Tel: 805-639-3350 Fax: 805-639-4101 E-mail: info@cincon.com