

TR60M Series

Application Note V10

60W AC-DC Medical Switch Adapter TR60M Series APPLICATION NOTE

Approved By:

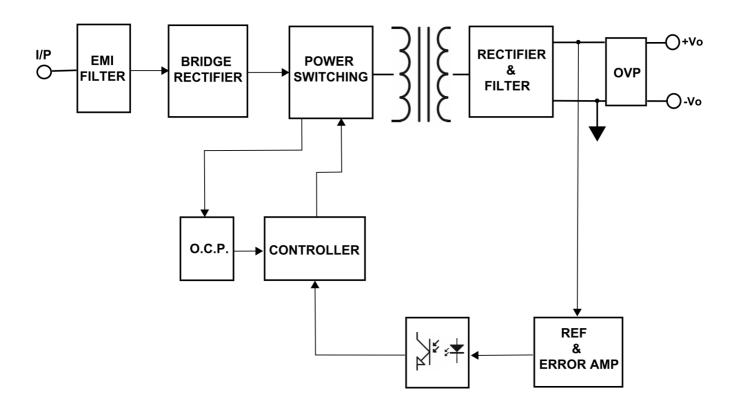
Department	Approved By	Checked By	Written By
Research and Development Department	Ovid	Calvin	Jeter
Design Quality Department	Benny	oloſ	

TR60M Series

Application Note V10

<u>Content</u>

1. INTRODUCTION	3
2. ELECTRICAL BLOCK DIAGRAM	3
3. MAIN FEATURES AND FUNCTIONS 3.1 Operating Temperature Range	4 4
3.2 Output Protection (Over Current Protection)	4
4.1 Test Set-Up	4 4
4.2 Output Ripple and Noise Measurement	4
5. PACKING INFORMATION	5



TR60M Series Application Note V10

1. Introduction

This application note describes the features and functions of Cincon's TR60M series of AC-DC switch power adapter. These are highly efficient, reliable, compact, high power density, single output AC-DC switch power adapter. The switch power adapter is fully protected against short circuit and over-voltage conditions. Cincon's world class automated manufacturing methods, together with an extensive testing and qualification program, ensure that the TR60M series switch power adapter is extremely reliable.

2. Electrical Block Diagram

Application Note V10

3. Main Features and Functions

3.1 Operating Temperature Range

The highly efficient design of Cincon's TR60M series switch power adapter has resulted in their ability to operate within ambient temperature environments from 0° C to 60° C(40° C \sim 60°C with 2.5%/°C de-rating).

Due consideration must be given to the de-rating curves when ascertaining the maximum power that can be drawn from the switch power adapter. The maximum power which can be drawn is influenced by a number of factors, such as

- Input voltage range
- Permissible output load (per derating curve)
- Effective heat sinks

3.2 Output Protection (Over Current Protection)

The switch power adapter provide full continuous shortcircuit protection. The unit will auto recover once the short circuit is removed. To provide protection in a fault condition, the unit is equipped with internal over-current protection. The unit will operate normally once the fault condition is removed. The switch power adapter will go to hiccup mode if the output current is set from 150% to 180% of rated current.

4. Applications

4.1 Test Set-Up

The basic test set-up to measure parameters such as efficiency and load regulation is shown in Figure 1. When testing the Cincon's TR60M series under any transient conditions, please ensure that the transient response of the source is sufficient to power the equipment under test. We can calculate the

- Efficiency
- Load regulation and line regulation

The value of efficiency is defined as:

$$\eta = \frac{Vo \times Io}{Pin} \times 100\%$$

Where:

Vo is output voltage lo is output current Pin is input power

The value of load regulation is defined as:

Load reg1. =
$$\frac{V_{FL} - V_{NL}}{V_{NL}} \times 100\%$$

Where:

 $\label{eq:VFL} V_{FL} \text{ is the output voltage at full load} \\ V_{NL} \text{ is the output voltage at 60\% load}$

Load reg2. =
$$\frac{V_{FL} - V_{NL}}{V_{NL}} \times 100\%$$

Where:

 V_{FL} is the output voltage at 60% load V_{NL} is the output voltage at 20% load

The value of line regulation is defined as:

$$Line \ reg. = \frac{V_{HL} - V_{LL}}{V_{LL}} \times 100\%$$

Where:

 V_{HL} is the output voltage of maximum input voltage at full load.

 $V_{\mbox{\tiny LL}}$ is the output voltage of minimum input voltage at full load.

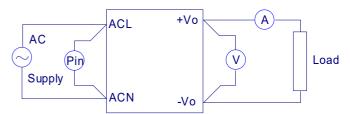


Figure 1. TR60M Series Test Setup

4.2 Output Ripple and Noise Measurement

The test set-up for noise and ripple measurements is shown in Figure 2. Measured method:

Add a C2=0.1uF ceramic capacitor and a C1=10uF electrolytic capacitor to output at 20 MHz Band Width.

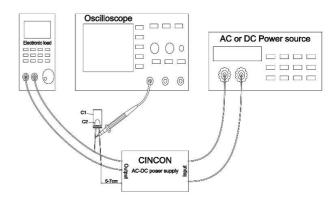
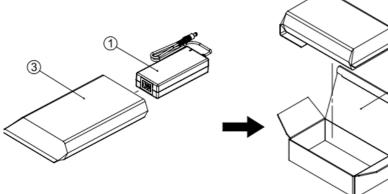
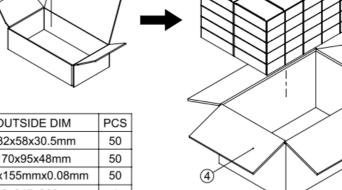


Figure 2. Output Voltage Ripple and Noise Measurement Set up




Application Note V10

6

5. Packing Information

The packing information for TR60MXX series is showing as follows:

ITEM	PART NO.	NAME	OUTSIDE DIM	PCS
1		TR60MXX Product	132x58x30.5mm	50
2	G64A01000	Inner Box	170x95x48mm	50
3	G64D15057	Plastic Bag	245x155mmx0.08mm	50
4	G64100099	No.49 Cardboard Box	500x345x260mm	1

Each Box Packaging 50 PCS Products Gross weight Ref. 18.5 Kg

Headquarters:

14F, No.306, Sec.4, Hsin Yi Rd. Taipei, Taiwan Tel: 886-2-27086210 Fax: 886-2-27029852 E-mail: <u>sales@cincon.com.tw</u> Web Site: <u>https://www.cincon.com</u>

CINCON ELECTRONICS CO., LTD. Factory: C

No. 8-1, Fu Kung Rd. Fu Hsing Industrial Park Fu Hsing Hsiang, Chang Hua Hsien, Taiwan Tel: 886-4-7690261 Fax: 886-4-7698031

Cincon North America:

1655 Mesa Verde Ave. Ste 180 Ventura, CA 93003 Tel: 805-639-3350 Fax: 805-639-4101 E-mail: <u>info@cincon.com</u>